Properties

Label 2-77760-1.1-c1-0-19
Degree $2$
Conductor $77760$
Sign $1$
Analytic cond. $620.916$
Root an. cond. $24.9182$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 5·7-s − 3·11-s − 4·13-s − 3·17-s + 2·23-s + 25-s − 4·29-s − 2·31-s − 5·35-s + 6·41-s − 9·43-s + 12·47-s + 18·49-s + 53-s + 3·55-s + 4·59-s − 11·61-s + 4·65-s − 3·67-s − 13·71-s − 14·73-s − 15·77-s + 4·79-s + 3·85-s + 12·89-s − 20·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.88·7-s − 0.904·11-s − 1.10·13-s − 0.727·17-s + 0.417·23-s + 1/5·25-s − 0.742·29-s − 0.359·31-s − 0.845·35-s + 0.937·41-s − 1.37·43-s + 1.75·47-s + 18/7·49-s + 0.137·53-s + 0.404·55-s + 0.520·59-s − 1.40·61-s + 0.496·65-s − 0.366·67-s − 1.54·71-s − 1.63·73-s − 1.70·77-s + 0.450·79-s + 0.325·85-s + 1.27·89-s − 2.09·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 77760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(77760\)    =    \(2^{6} \cdot 3^{5} \cdot 5\)
Sign: $1$
Analytic conductor: \(620.916\)
Root analytic conductor: \(24.9182\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 77760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.694875576\)
\(L(\frac12)\) \(\approx\) \(1.694875576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 5 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 11 T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 + 13 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08714503197756, −13.52651021847169, −13.10272840969827, −12.40132782315993, −12.01927657271740, −11.43840449114885, −11.14366392738140, −10.53433218694451, −10.26472185819201, −9.390084453310015, −8.767300344056224, −8.542741439332286, −7.638967808029795, −7.556052260224856, −7.178234257245567, −6.191578352046823, −5.494080086672144, −5.108538356464627, −4.500854078919424, −4.283712972795809, −3.297053033510225, −2.531833011327083, −2.077695584701603, −1.384442941282537, −0.4218634177859211, 0.4218634177859211, 1.384442941282537, 2.077695584701603, 2.531833011327083, 3.297053033510225, 4.283712972795809, 4.500854078919424, 5.108538356464627, 5.494080086672144, 6.191578352046823, 7.178234257245567, 7.556052260224856, 7.638967808029795, 8.542741439332286, 8.767300344056224, 9.390084453310015, 10.26472185819201, 10.53433218694451, 11.14366392738140, 11.43840449114885, 12.01927657271740, 12.40132782315993, 13.10272840969827, 13.52651021847169, 14.08714503197756

Graph of the $Z$-function along the critical line