L(s) = 1 | + 3-s + 9-s − 4·11-s − 13-s − 2·17-s − 4·19-s − 8·23-s + 27-s + 6·29-s + 8·31-s − 4·33-s − 6·37-s − 39-s + 2·41-s + 12·43-s + 8·47-s − 7·49-s − 2·51-s + 2·53-s − 4·57-s + 12·59-s − 2·61-s − 12·67-s − 8·69-s + 16·71-s − 10·73-s + 8·79-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.20·11-s − 0.277·13-s − 0.485·17-s − 0.917·19-s − 1.66·23-s + 0.192·27-s + 1.11·29-s + 1.43·31-s − 0.696·33-s − 0.986·37-s − 0.160·39-s + 0.312·41-s + 1.82·43-s + 1.16·47-s − 49-s − 0.280·51-s + 0.274·53-s − 0.529·57-s + 1.56·59-s − 0.256·61-s − 1.46·67-s − 0.963·69-s + 1.89·71-s − 1.17·73-s + 0.900·79-s + ⋯ |
Λ(s)=(=(7800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.917819670 |
L(21) |
≈ |
1.917819670 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
| 13 | 1+T |
good | 7 | 1+pT2 |
| 11 | 1+4T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−16T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−18T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.939428236970305679916521566968, −7.33133212186291559292656053100, −6.43524788089026139039377475493, −5.88592241444235658101323561619, −4.86565535063385090482663143888, −4.36054460607134966378609243541, −3.48486855853978324398418219304, −2.46066849465400339563544193095, −2.15821041599584095280752391820, −0.63876466895030982743652561062,
0.63876466895030982743652561062, 2.15821041599584095280752391820, 2.46066849465400339563544193095, 3.48486855853978324398418219304, 4.36054460607134966378609243541, 4.86565535063385090482663143888, 5.88592241444235658101323561619, 6.43524788089026139039377475493, 7.33133212186291559292656053100, 7.939428236970305679916521566968