L(s) = 1 | + 3-s − 3.71·7-s + 9-s + 3.31·11-s + 13-s + 1.55·17-s − 5.33·19-s − 3.71·21-s + 0.442·23-s + 27-s + 2.56·29-s + 0.613·31-s + 3.31·33-s − 0.257·37-s + 39-s − 10.6·41-s + 12.6·43-s + 7.44·47-s + 6.78·49-s + 1.55·51-s − 5.39·53-s − 5.33·57-s − 13.1·59-s − 5.27·61-s − 3.71·63-s + 10.5·67-s + 0.442·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.40·7-s + 0.333·9-s + 1.00·11-s + 0.277·13-s + 0.377·17-s − 1.22·19-s − 0.810·21-s + 0.0923·23-s + 0.192·27-s + 0.477·29-s + 0.110·31-s + 0.577·33-s − 0.0423·37-s + 0.160·39-s − 1.65·41-s + 1.93·43-s + 1.08·47-s + 0.968·49-s + 0.218·51-s − 0.741·53-s − 0.706·57-s − 1.71·59-s − 0.675·61-s − 0.467·63-s + 1.28·67-s + 0.0533·69-s + ⋯ |
Λ(s)=(=(7800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.115392379 |
L(21) |
≈ |
2.115392379 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
| 13 | 1−T |
good | 7 | 1+3.71T+7T2 |
| 11 | 1−3.31T+11T2 |
| 17 | 1−1.55T+17T2 |
| 19 | 1+5.33T+19T2 |
| 23 | 1−0.442T+23T2 |
| 29 | 1−2.56T+29T2 |
| 31 | 1−0.613T+31T2 |
| 37 | 1+0.257T+37T2 |
| 41 | 1+10.6T+41T2 |
| 43 | 1−12.6T+43T2 |
| 47 | 1−7.44T+47T2 |
| 53 | 1+5.39T+53T2 |
| 59 | 1+13.1T+59T2 |
| 61 | 1+5.27T+61T2 |
| 67 | 1−10.5T+67T2 |
| 71 | 1−0.311T+71T2 |
| 73 | 1−9.46T+73T2 |
| 79 | 1−16.1T+79T2 |
| 83 | 1−11.7T+83T2 |
| 89 | 1+4.58T+89T2 |
| 97 | 1−10.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.898601872183510745471942063650, −7.07887586582490824219196118760, −6.37412077137627625529700486489, −6.15005817220053809787088867415, −4.95515973118666087053754639419, −4.03998480593778221413283022259, −3.54836061815997226057730920375, −2.79790544488079651684554345416, −1.87353633001064472785425594687, −0.69762297965155179851538211371,
0.69762297965155179851538211371, 1.87353633001064472785425594687, 2.79790544488079651684554345416, 3.54836061815997226057730920375, 4.03998480593778221413283022259, 4.95515973118666087053754639419, 6.15005817220053809787088867415, 6.37412077137627625529700486489, 7.07887586582490824219196118760, 7.898601872183510745471942063650