L(s) = 1 | − 3-s + 2·7-s + 9-s − 13-s + 4·17-s + 6·19-s − 2·21-s − 6·23-s − 27-s + 4·29-s + 8·31-s + 6·37-s + 39-s + 6·41-s − 4·43-s − 8·47-s − 3·49-s − 4·51-s − 2·53-s − 6·57-s − 2·61-s + 2·63-s + 4·67-s + 6·69-s − 8·71-s + 16·79-s + 81-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.755·7-s + 1/3·9-s − 0.277·13-s + 0.970·17-s + 1.37·19-s − 0.436·21-s − 1.25·23-s − 0.192·27-s + 0.742·29-s + 1.43·31-s + 0.986·37-s + 0.160·39-s + 0.937·41-s − 0.609·43-s − 1.16·47-s − 3/7·49-s − 0.560·51-s − 0.274·53-s − 0.794·57-s − 0.256·61-s + 0.251·63-s + 0.488·67-s + 0.722·69-s − 0.949·71-s + 1.80·79-s + 1/9·81-s + ⋯ |
Λ(s)=(=(7800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.978213471 |
L(21) |
≈ |
1.978213471 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1 |
| 13 | 1+T |
good | 7 | 1−2T+pT2 |
| 11 | 1+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+16T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.986622336300113308442054608512, −7.22795569086376819706411624696, −6.33949481008680480500487088605, −5.79600071764111841459942651372, −4.97946564076675613100018722733, −4.55018293538489446400556372225, −3.54791455598267040520875396042, −2.68727288426056290994599474575, −1.58864990401304168322356395338, −0.77106860614917570896246748945,
0.77106860614917570896246748945, 1.58864990401304168322356395338, 2.68727288426056290994599474575, 3.54791455598267040520875396042, 4.55018293538489446400556372225, 4.97946564076675613100018722733, 5.79600071764111841459942651372, 6.33949481008680480500487088605, 7.22795569086376819706411624696, 7.986622336300113308442054608512