Properties

Label 2-78e2-1.1-c1-0-53
Degree 22
Conductor 60846084
Sign 1-1
Analytic cond. 48.580948.5809
Root an. cond. 6.970006.97000
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·7-s − 3.46·19-s − 5·25-s + 1.73·31-s − 6.92·37-s − 5·43-s − 4·49-s + 61-s − 15.5·67-s + 15.5·73-s − 17·79-s + 5.19·97-s + 7·103-s − 12.1·109-s + ⋯
L(s)  = 1  + 0.654·7-s − 0.794·19-s − 25-s + 0.311·31-s − 1.13·37-s − 0.762·43-s − 0.571·49-s + 0.128·61-s − 1.90·67-s + 1.82·73-s − 1.91·79-s + 0.527·97-s + 0.689·103-s − 1.16·109-s + ⋯

Functional equation

Λ(s)=(6084s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(6084s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 60846084    =    22321322^{2} \cdot 3^{2} \cdot 13^{2}
Sign: 1-1
Analytic conductor: 48.580948.5809
Root analytic conductor: 6.970006.97000
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 6084, ( :1/2), 1)(2,\ 6084,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
13 1 1
good5 1+5T2 1 + 5T^{2}
7 11.73T+7T2 1 - 1.73T + 7T^{2}
11 1+11T2 1 + 11T^{2}
17 1+17T2 1 + 17T^{2}
19 1+3.46T+19T2 1 + 3.46T + 19T^{2}
23 1+23T2 1 + 23T^{2}
29 1+29T2 1 + 29T^{2}
31 11.73T+31T2 1 - 1.73T + 31T^{2}
37 1+6.92T+37T2 1 + 6.92T + 37T^{2}
41 1+41T2 1 + 41T^{2}
43 1+5T+43T2 1 + 5T + 43T^{2}
47 1+47T2 1 + 47T^{2}
53 1+53T2 1 + 53T^{2}
59 1+59T2 1 + 59T^{2}
61 1T+61T2 1 - T + 61T^{2}
67 1+15.5T+67T2 1 + 15.5T + 67T^{2}
71 1+71T2 1 + 71T^{2}
73 115.5T+73T2 1 - 15.5T + 73T^{2}
79 1+17T+79T2 1 + 17T + 79T^{2}
83 1+83T2 1 + 83T^{2}
89 1+89T2 1 + 89T^{2}
97 15.19T+97T2 1 - 5.19T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.81766255114161347993477749730, −7.01882926698614787657487486010, −6.31234789372820725681681334745, −5.54638297763503232778644905724, −4.80321683734389458223072062275, −4.11056584032868454838640183450, −3.25188958921145096612546032330, −2.20513435705524486513020177223, −1.44541016615256329290115722772, 0, 1.44541016615256329290115722772, 2.20513435705524486513020177223, 3.25188958921145096612546032330, 4.11056584032868454838640183450, 4.80321683734389458223072062275, 5.54638297763503232778644905724, 6.31234789372820725681681334745, 7.01882926698614787657487486010, 7.81766255114161347993477749730

Graph of the ZZ-function along the critical line