Properties

Label 2-78e2-1.1-c1-0-53
Degree $2$
Conductor $6084$
Sign $-1$
Analytic cond. $48.5809$
Root an. cond. $6.97000$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·7-s − 3.46·19-s − 5·25-s + 1.73·31-s − 6.92·37-s − 5·43-s − 4·49-s + 61-s − 15.5·67-s + 15.5·73-s − 17·79-s + 5.19·97-s + 7·103-s − 12.1·109-s + ⋯
L(s)  = 1  + 0.654·7-s − 0.794·19-s − 25-s + 0.311·31-s − 1.13·37-s − 0.762·43-s − 0.571·49-s + 0.128·61-s − 1.90·67-s + 1.82·73-s − 1.91·79-s + 0.527·97-s + 0.689·103-s − 1.16·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6084\)    =    \(2^{2} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(48.5809\)
Root analytic conductor: \(6.97000\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6084,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 5T^{2} \)
7 \( 1 - 1.73T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 3.46T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 1.73T + 31T^{2} \)
37 \( 1 + 6.92T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 5T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 15.5T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 15.5T + 73T^{2} \)
79 \( 1 + 17T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81766255114161347993477749730, −7.01882926698614787657487486010, −6.31234789372820725681681334745, −5.54638297763503232778644905724, −4.80321683734389458223072062275, −4.11056584032868454838640183450, −3.25188958921145096612546032330, −2.20513435705524486513020177223, −1.44541016615256329290115722772, 0, 1.44541016615256329290115722772, 2.20513435705524486513020177223, 3.25188958921145096612546032330, 4.11056584032868454838640183450, 4.80321683734389458223072062275, 5.54638297763503232778644905724, 6.31234789372820725681681334745, 7.01882926698614787657487486010, 7.81766255114161347993477749730

Graph of the $Z$-function along the critical line