Properties

Label 2-792-1.1-c3-0-35
Degree $2$
Conductor $792$
Sign $-1$
Analytic cond. $46.7295$
Root an. cond. $6.83589$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.24·5-s + 26.8·7-s − 11·11-s − 72.1·13-s − 116.·17-s − 70.6·19-s − 21.2·23-s − 57.0·25-s − 38.4·29-s − 263.·31-s + 221.·35-s − 156.·37-s + 112.·41-s + 59.7·43-s + 134.·47-s + 376.·49-s + 585.·53-s − 90.6·55-s − 573.·59-s + 347.·61-s − 594.·65-s − 1.05e3·67-s + 292.·71-s + 230.·73-s − 295.·77-s + 1.16e3·79-s − 763.·83-s + ⋯
L(s)  = 1  + 0.737·5-s + 1.44·7-s − 0.301·11-s − 1.53·13-s − 1.66·17-s − 0.852·19-s − 0.192·23-s − 0.456·25-s − 0.246·29-s − 1.52·31-s + 1.06·35-s − 0.694·37-s + 0.426·41-s + 0.211·43-s + 0.417·47-s + 1.09·49-s + 1.51·53-s − 0.222·55-s − 1.26·59-s + 0.729·61-s − 1.13·65-s − 1.92·67-s + 0.489·71-s + 0.370·73-s − 0.436·77-s + 1.66·79-s − 1.00·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(792\)    =    \(2^{3} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(46.7295\)
Root analytic conductor: \(6.83589\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 792,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 11T \)
good5 \( 1 - 8.24T + 125T^{2} \)
7 \( 1 - 26.8T + 343T^{2} \)
13 \( 1 + 72.1T + 2.19e3T^{2} \)
17 \( 1 + 116.T + 4.91e3T^{2} \)
19 \( 1 + 70.6T + 6.85e3T^{2} \)
23 \( 1 + 21.2T + 1.21e4T^{2} \)
29 \( 1 + 38.4T + 2.43e4T^{2} \)
31 \( 1 + 263.T + 2.97e4T^{2} \)
37 \( 1 + 156.T + 5.06e4T^{2} \)
41 \( 1 - 112.T + 6.89e4T^{2} \)
43 \( 1 - 59.7T + 7.95e4T^{2} \)
47 \( 1 - 134.T + 1.03e5T^{2} \)
53 \( 1 - 585.T + 1.48e5T^{2} \)
59 \( 1 + 573.T + 2.05e5T^{2} \)
61 \( 1 - 347.T + 2.26e5T^{2} \)
67 \( 1 + 1.05e3T + 3.00e5T^{2} \)
71 \( 1 - 292.T + 3.57e5T^{2} \)
73 \( 1 - 230.T + 3.89e5T^{2} \)
79 \( 1 - 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 763.T + 5.71e5T^{2} \)
89 \( 1 + 1.02e3T + 7.04e5T^{2} \)
97 \( 1 - 832.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.385260194438131808730953323144, −8.692378215264208030017023417285, −7.70994655564718107662566211688, −6.97006542723097387409349922291, −5.76564217350921905409920950086, −4.95689062682147546158778242461, −4.19952040350261922975248084438, −2.34734269386630737020893559692, −1.87173455364148591309205739655, 0, 1.87173455364148591309205739655, 2.34734269386630737020893559692, 4.19952040350261922975248084438, 4.95689062682147546158778242461, 5.76564217350921905409920950086, 6.97006542723097387409349922291, 7.70994655564718107662566211688, 8.692378215264208030017023417285, 9.385260194438131808730953323144

Graph of the $Z$-function along the critical line