Properties

Label 2-7920-1.1-c1-0-47
Degree $2$
Conductor $7920$
Sign $1$
Analytic cond. $63.2415$
Root an. cond. $7.95245$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2.73·7-s + 11-s + 4.19·13-s − 4.73·17-s + 7.46·19-s − 6.92·23-s + 25-s − 6.92·29-s + 0.535·31-s + 2.73·35-s − 0.535·37-s + 6.92·41-s + 12.1·43-s + 9.46·47-s + 0.464·49-s + 6·53-s + 55-s + 0.928·59-s − 7.46·61-s + 4.19·65-s + 4·67-s − 6·71-s − 9.66·73-s + 2.73·77-s + 7.46·79-s + 4.73·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.03·7-s + 0.301·11-s + 1.16·13-s − 1.14·17-s + 1.71·19-s − 1.44·23-s + 0.200·25-s − 1.28·29-s + 0.0962·31-s + 0.461·35-s − 0.0881·37-s + 1.08·41-s + 1.85·43-s + 1.38·47-s + 0.0663·49-s + 0.824·53-s + 0.134·55-s + 0.120·59-s − 0.955·61-s + 0.520·65-s + 0.488·67-s − 0.712·71-s − 1.13·73-s + 0.311·77-s + 0.839·79-s + 0.519·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7920\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(63.2415\)
Root analytic conductor: \(7.95245\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.914929594\)
\(L(\frac12)\) \(\approx\) \(2.914929594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 - 2.73T + 7T^{2} \)
13 \( 1 - 4.19T + 13T^{2} \)
17 \( 1 + 4.73T + 17T^{2} \)
19 \( 1 - 7.46T + 19T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 + 6.92T + 29T^{2} \)
31 \( 1 - 0.535T + 31T^{2} \)
37 \( 1 + 0.535T + 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 - 9.46T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 0.928T + 59T^{2} \)
61 \( 1 + 7.46T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 9.66T + 73T^{2} \)
79 \( 1 - 7.46T + 79T^{2} \)
83 \( 1 - 4.73T + 83T^{2} \)
89 \( 1 - 12.9T + 89T^{2} \)
97 \( 1 + 4.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58826511203377093397565487603, −7.48227088765239604165134628489, −6.21206877568958306846962330794, −5.87742225591742689517417588041, −5.09807497359579653096917642335, −4.22526183742155019989444017494, −3.69005809956761748539795761813, −2.50220891814361461179387807846, −1.75541822608941386360133822539, −0.899592233996106505788903115189, 0.899592233996106505788903115189, 1.75541822608941386360133822539, 2.50220891814361461179387807846, 3.69005809956761748539795761813, 4.22526183742155019989444017494, 5.09807497359579653096917642335, 5.87742225591742689517417588041, 6.21206877568958306846962330794, 7.48227088765239604165134628489, 7.58826511203377093397565487603

Graph of the $Z$-function along the critical line