Properties

Label 2-799-799.798-c0-0-1
Degree $2$
Conductor $799$
Sign $1$
Analytic cond. $0.398752$
Root an. cond. $0.631468$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s + 1.00·4-s − 1.84·5-s + 9-s + 2.61·10-s − 0.765·11-s − 0.999·16-s − 17-s − 1.41·18-s − 1.84·20-s + 1.08·22-s + 1.84·23-s + 2.41·25-s + 0.765·29-s + 0.765·31-s + 1.41·32-s + 1.41·34-s + 1.00·36-s + 1.84·41-s − 0.765·44-s − 1.84·45-s − 2.61·46-s − 47-s + 49-s − 3.41·50-s + 1.41·55-s − 1.08·58-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.00·4-s − 1.84·5-s + 9-s + 2.61·10-s − 0.765·11-s − 0.999·16-s − 17-s − 1.41·18-s − 1.84·20-s + 1.08·22-s + 1.84·23-s + 2.41·25-s + 0.765·29-s + 0.765·31-s + 1.41·32-s + 1.41·34-s + 1.00·36-s + 1.84·41-s − 0.765·44-s − 1.84·45-s − 2.61·46-s − 47-s + 49-s − 3.41·50-s + 1.41·55-s − 1.08·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(799\)    =    \(17 \cdot 47\)
Sign: $1$
Analytic conductor: \(0.398752\)
Root analytic conductor: \(0.631468\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{799} (798, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 799,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3425291637\)
\(L(\frac12)\) \(\approx\) \(0.3425291637\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + T \)
47 \( 1 + T \)
good2 \( 1 + 1.41T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 + 1.84T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 + 0.765T + T^{2} \)
13 \( 1 - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - 1.84T + T^{2} \)
29 \( 1 - 0.765T + T^{2} \)
31 \( 1 - 0.765T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 1.84T + T^{2} \)
43 \( 1 - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - 1.41T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 0.765T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58279108889080707195992803554, −9.500232934364953692314729484149, −8.635043526895702006734981567288, −8.048299351295963846142896233099, −7.25385161510358371747494107528, −6.82861976462304510514837837719, −4.81802217054357925804148446929, −4.16927173793250938157856854686, −2.73541741301945994096599588112, −0.889799171181315019954404780631, 0.889799171181315019954404780631, 2.73541741301945994096599588112, 4.16927173793250938157856854686, 4.81802217054357925804148446929, 6.82861976462304510514837837719, 7.25385161510358371747494107528, 8.048299351295963846142896233099, 8.635043526895702006734981567288, 9.500232934364953692314729484149, 10.58279108889080707195992803554

Graph of the $Z$-function along the critical line