Properties

Label 2-799-799.798-c0-0-1
Degree 22
Conductor 799799
Sign 11
Analytic cond. 0.3987520.398752
Root an. cond. 0.6314680.631468
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s + 1.00·4-s − 1.84·5-s + 9-s + 2.61·10-s − 0.765·11-s − 0.999·16-s − 17-s − 1.41·18-s − 1.84·20-s + 1.08·22-s + 1.84·23-s + 2.41·25-s + 0.765·29-s + 0.765·31-s + 1.41·32-s + 1.41·34-s + 1.00·36-s + 1.84·41-s − 0.765·44-s − 1.84·45-s − 2.61·46-s − 47-s + 49-s − 3.41·50-s + 1.41·55-s − 1.08·58-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.00·4-s − 1.84·5-s + 9-s + 2.61·10-s − 0.765·11-s − 0.999·16-s − 17-s − 1.41·18-s − 1.84·20-s + 1.08·22-s + 1.84·23-s + 2.41·25-s + 0.765·29-s + 0.765·31-s + 1.41·32-s + 1.41·34-s + 1.00·36-s + 1.84·41-s − 0.765·44-s − 1.84·45-s − 2.61·46-s − 47-s + 49-s − 3.41·50-s + 1.41·55-s − 1.08·58-s + ⋯

Functional equation

Λ(s)=(799s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
Λ(s)=(799s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 799 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 799799    =    174717 \cdot 47
Sign: 11
Analytic conductor: 0.3987520.398752
Root analytic conductor: 0.6314680.631468
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ799(798,)\chi_{799} (798, \cdot )
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 799, ( :0), 1)(2,\ 799,\ (\ :0),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.34252916370.3425291637
L(12)L(\frac12) \approx 0.34252916370.3425291637
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad17 1+T 1 + T
47 1+T 1 + T
good2 1+1.41T+T2 1 + 1.41T + T^{2}
3 1T2 1 - T^{2}
5 1+1.84T+T2 1 + 1.84T + T^{2}
7 1T2 1 - T^{2}
11 1+0.765T+T2 1 + 0.765T + T^{2}
13 1T2 1 - T^{2}
19 1T2 1 - T^{2}
23 11.84T+T2 1 - 1.84T + T^{2}
29 10.765T+T2 1 - 0.765T + T^{2}
31 10.765T+T2 1 - 0.765T + T^{2}
37 1T2 1 - T^{2}
41 11.84T+T2 1 - 1.84T + T^{2}
43 1T2 1 - T^{2}
53 1+T2 1 + T^{2}
59 11.41T+T2 1 - 1.41T + T^{2}
61 1T2 1 - T^{2}
67 1T2 1 - T^{2}
71 1T2 1 - T^{2}
73 1+0.765T+T2 1 + 0.765T + T^{2}
79 1T2 1 - T^{2}
83 1+T2 1 + T^{2}
89 1+T2 1 + T^{2}
97 1T2 1 - T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.58279108889080707195992803554, −9.500232934364953692314729484149, −8.635043526895702006734981567288, −8.048299351295963846142896233099, −7.25385161510358371747494107528, −6.82861976462304510514837837719, −4.81802217054357925804148446929, −4.16927173793250938157856854686, −2.73541741301945994096599588112, −0.889799171181315019954404780631, 0.889799171181315019954404780631, 2.73541741301945994096599588112, 4.16927173793250938157856854686, 4.81802217054357925804148446929, 6.82861976462304510514837837719, 7.25385161510358371747494107528, 8.048299351295963846142896233099, 8.635043526895702006734981567288, 9.500232934364953692314729484149, 10.58279108889080707195992803554

Graph of the ZZ-function along the critical line