L(s) = 1 | + (−0.151 + 2.01i)2-s + (1.33 − 0.412i)3-s + (−2.06 − 0.310i)4-s + (−1.66 − 1.54i)5-s + (0.629 + 2.76i)6-s + (−1.77 − 1.95i)7-s + (0.0388 − 0.170i)8-s + (−0.858 + 0.584i)9-s + (3.37 − 3.12i)10-s + (1.57 + 1.07i)11-s + (−2.88 + 0.435i)12-s + (4.29 − 2.06i)13-s + (4.21 − 3.28i)14-s + (−2.87 − 1.38i)15-s + (−3.65 − 1.12i)16-s + (−1.47 + 3.76i)17-s + ⋯ |
L(s) = 1 | + (−0.106 + 1.42i)2-s + (0.772 − 0.238i)3-s + (−1.03 − 0.155i)4-s + (−0.745 − 0.692i)5-s + (0.257 + 1.12i)6-s + (−0.671 − 0.740i)7-s + (0.0137 − 0.0601i)8-s + (−0.286 + 0.194i)9-s + (1.06 − 0.989i)10-s + (0.475 + 0.324i)11-s + (−0.834 + 0.125i)12-s + (1.19 − 0.573i)13-s + (1.12 − 0.878i)14-s + (−0.741 − 0.356i)15-s + (−0.912 − 0.281i)16-s + (−0.358 + 0.914i)17-s + ⋯ |
Λ(s)=(=(49s/2ΓC(s)L(s)(0.305−0.952i)Λ(2−s)
Λ(s)=(=(49s/2ΓC(s+1/2)L(s)(0.305−0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
49
= 72
|
Sign: |
0.305−0.952i
|
Analytic conductor: |
0.391266 |
Root analytic conductor: |
0.625513 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ49(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 49, ( :1/2), 0.305−0.952i)
|
Particular Values
L(1) |
≈ |
0.678476+0.494628i |
L(21) |
≈ |
0.678476+0.494628i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(1.77+1.95i)T |
good | 2 | 1+(0.151−2.01i)T+(−1.97−0.298i)T2 |
| 3 | 1+(−1.33+0.412i)T+(2.47−1.68i)T2 |
| 5 | 1+(1.66+1.54i)T+(0.373+4.98i)T2 |
| 11 | 1+(−1.57−1.07i)T+(4.01+10.2i)T2 |
| 13 | 1+(−4.29+2.06i)T+(8.10−10.1i)T2 |
| 17 | 1+(1.47−3.76i)T+(−12.4−11.5i)T2 |
| 19 | 1+(−0.218+0.379i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.49−6.35i)T+(−16.8+15.6i)T2 |
| 29 | 1+(5.30+6.64i)T+(−6.45+28.2i)T2 |
| 31 | 1+(0.409+0.709i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−3.68+0.555i)T+(35.3−10.9i)T2 |
| 41 | 1+(−2.40+10.5i)T+(−36.9−17.7i)T2 |
| 43 | 1+(−1.79−7.87i)T+(−38.7+18.6i)T2 |
| 47 | 1+(−0.114+1.53i)T+(−46.4−7.00i)T2 |
| 53 | 1+(−0.818−0.123i)T+(50.6+15.6i)T2 |
| 59 | 1+(2.23−2.07i)T+(4.40−58.8i)T2 |
| 61 | 1+(−0.0576+0.00869i)T+(58.2−17.9i)T2 |
| 67 | 1+(−6.06−10.5i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3.05+3.83i)T+(−15.7−69.2i)T2 |
| 73 | 1+(0.809+10.8i)T+(−72.1+10.8i)T2 |
| 79 | 1+(1.22−2.13i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.16+2.00i)T+(51.7+64.8i)T2 |
| 89 | 1+(3.35−2.29i)T+(32.5−82.8i)T2 |
| 97 | 1−4.05T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.79744875144760282794257693394, −15.03629688033677944972190542769, −13.76713617058722842780206151260, −13.00829519132183444950190829452, −11.21732687306566565305305467948, −9.226964059605660142590728131912, −8.230176685988074165768637026139, −7.41274009356171215653093201065, −5.91494540484763681950985226682, −3.93237061296174293806989214568,
2.83692731735832490189411058095, 3.75844927420940842911488618835, 6.60715651189536880904590832936, 8.708948973887031283098563696316, 9.412697870493973541493776701858, 10.99492566767919878671855605569, 11.64622543064035633172985139689, 12.89019202858721180510896992985, 14.16515065600748207108430875633, 15.27678747534733236685282038185