Properties

Label 2-7e2-49.23-c1-0-1
Degree $2$
Conductor $49$
Sign $0.305 - 0.952i$
Analytic cond. $0.391266$
Root an. cond. $0.625513$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.151 + 2.01i)2-s + (1.33 − 0.412i)3-s + (−2.06 − 0.310i)4-s + (−1.66 − 1.54i)5-s + (0.629 + 2.76i)6-s + (−1.77 − 1.95i)7-s + (0.0388 − 0.170i)8-s + (−0.858 + 0.584i)9-s + (3.37 − 3.12i)10-s + (1.57 + 1.07i)11-s + (−2.88 + 0.435i)12-s + (4.29 − 2.06i)13-s + (4.21 − 3.28i)14-s + (−2.87 − 1.38i)15-s + (−3.65 − 1.12i)16-s + (−1.47 + 3.76i)17-s + ⋯
L(s)  = 1  + (−0.106 + 1.42i)2-s + (0.772 − 0.238i)3-s + (−1.03 − 0.155i)4-s + (−0.745 − 0.692i)5-s + (0.257 + 1.12i)6-s + (−0.671 − 0.740i)7-s + (0.0137 − 0.0601i)8-s + (−0.286 + 0.194i)9-s + (1.06 − 0.989i)10-s + (0.475 + 0.324i)11-s + (−0.834 + 0.125i)12-s + (1.19 − 0.573i)13-s + (1.12 − 0.878i)14-s + (−0.741 − 0.356i)15-s + (−0.912 − 0.281i)16-s + (−0.358 + 0.914i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.305 - 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $0.305 - 0.952i$
Analytic conductor: \(0.391266\)
Root analytic conductor: \(0.625513\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :1/2),\ 0.305 - 0.952i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.678476 + 0.494628i\)
\(L(\frac12)\) \(\approx\) \(0.678476 + 0.494628i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (1.77 + 1.95i)T \)
good2 \( 1 + (0.151 - 2.01i)T + (-1.97 - 0.298i)T^{2} \)
3 \( 1 + (-1.33 + 0.412i)T + (2.47 - 1.68i)T^{2} \)
5 \( 1 + (1.66 + 1.54i)T + (0.373 + 4.98i)T^{2} \)
11 \( 1 + (-1.57 - 1.07i)T + (4.01 + 10.2i)T^{2} \)
13 \( 1 + (-4.29 + 2.06i)T + (8.10 - 10.1i)T^{2} \)
17 \( 1 + (1.47 - 3.76i)T + (-12.4 - 11.5i)T^{2} \)
19 \( 1 + (-0.218 + 0.379i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.49 - 6.35i)T + (-16.8 + 15.6i)T^{2} \)
29 \( 1 + (5.30 + 6.64i)T + (-6.45 + 28.2i)T^{2} \)
31 \( 1 + (0.409 + 0.709i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-3.68 + 0.555i)T + (35.3 - 10.9i)T^{2} \)
41 \( 1 + (-2.40 + 10.5i)T + (-36.9 - 17.7i)T^{2} \)
43 \( 1 + (-1.79 - 7.87i)T + (-38.7 + 18.6i)T^{2} \)
47 \( 1 + (-0.114 + 1.53i)T + (-46.4 - 7.00i)T^{2} \)
53 \( 1 + (-0.818 - 0.123i)T + (50.6 + 15.6i)T^{2} \)
59 \( 1 + (2.23 - 2.07i)T + (4.40 - 58.8i)T^{2} \)
61 \( 1 + (-0.0576 + 0.00869i)T + (58.2 - 17.9i)T^{2} \)
67 \( 1 + (-6.06 - 10.5i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-3.05 + 3.83i)T + (-15.7 - 69.2i)T^{2} \)
73 \( 1 + (0.809 + 10.8i)T + (-72.1 + 10.8i)T^{2} \)
79 \( 1 + (1.22 - 2.13i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (4.16 + 2.00i)T + (51.7 + 64.8i)T^{2} \)
89 \( 1 + (3.35 - 2.29i)T + (32.5 - 82.8i)T^{2} \)
97 \( 1 - 4.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.79744875144760282794257693394, −15.03629688033677944972190542769, −13.76713617058722842780206151260, −13.00829519132183444950190829452, −11.21732687306566565305305467948, −9.226964059605660142590728131912, −8.230176685988074165768637026139, −7.41274009356171215653093201065, −5.91494540484763681950985226682, −3.93237061296174293806989214568, 2.83692731735832490189411058095, 3.75844927420940842911488618835, 6.60715651189536880904590832936, 8.708948973887031283098563696316, 9.412697870493973541493776701858, 10.99492566767919878671855605569, 11.64622543064035633172985139689, 12.89019202858721180510896992985, 14.16515065600748207108430875633, 15.27678747534733236685282038185

Graph of the $Z$-function along the critical line