Properties

Label 2-80-1.1-c7-0-12
Degree $2$
Conductor $80$
Sign $-1$
Analytic cond. $24.9908$
Root an. cond. $4.99908$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 36·3-s + 125·5-s − 776·7-s − 891·9-s + 124·11-s − 1.30e4·13-s + 4.50e3·15-s − 1.59e4·17-s + 2.05e4·19-s − 2.79e4·21-s + 2.92e4·23-s + 1.56e4·25-s − 1.10e5·27-s − 2.21e5·29-s + 1.09e5·31-s + 4.46e3·33-s − 9.70e4·35-s + 7.34e4·37-s − 4.70e5·39-s + 1.27e4·41-s − 2.90e5·43-s − 1.11e5·45-s − 1.26e6·47-s − 2.21e5·49-s − 5.74e5·51-s − 3.95e5·53-s + 1.55e4·55-s + ⋯
L(s)  = 1  + 0.769·3-s + 0.447·5-s − 0.855·7-s − 0.407·9-s + 0.0280·11-s − 1.65·13-s + 0.344·15-s − 0.787·17-s + 0.686·19-s − 0.658·21-s + 0.500·23-s + 1/5·25-s − 1.08·27-s − 1.68·29-s + 0.661·31-s + 0.0216·33-s − 0.382·35-s + 0.238·37-s − 1.27·39-s + 0.0289·41-s − 0.557·43-s − 0.182·45-s − 1.78·47-s − 0.268·49-s − 0.606·51-s − 0.365·53-s + 0.0125·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(24.9908\)
Root analytic conductor: \(4.99908\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p^{3} T \)
good3 \( 1 - 4 p^{2} T + p^{7} T^{2} \)
7 \( 1 + 776 T + p^{7} T^{2} \)
11 \( 1 - 124 T + p^{7} T^{2} \)
13 \( 1 + 13082 T + p^{7} T^{2} \)
17 \( 1 + 15950 T + p^{7} T^{2} \)
19 \( 1 - 20516 T + p^{7} T^{2} \)
23 \( 1 - 29224 T + p^{7} T^{2} \)
29 \( 1 + 221482 T + p^{7} T^{2} \)
31 \( 1 - 109760 T + p^{7} T^{2} \)
37 \( 1 - 73422 T + p^{7} T^{2} \)
41 \( 1 - 12762 T + p^{7} T^{2} \)
43 \( 1 + 290548 T + p^{7} T^{2} \)
47 \( 1 + 1269152 T + p^{7} T^{2} \)
53 \( 1 + 395778 T + p^{7} T^{2} \)
59 \( 1 + 421492 T + p^{7} T^{2} \)
61 \( 1 + 2122250 T + p^{7} T^{2} \)
67 \( 1 - 3132868 T + p^{7} T^{2} \)
71 \( 1 - 5376552 T + p^{7} T^{2} \)
73 \( 1 - 4985466 T + p^{7} T^{2} \)
79 \( 1 + 3867504 T + p^{7} T^{2} \)
83 \( 1 - 6190196 T + p^{7} T^{2} \)
89 \( 1 - 1124394 T + p^{7} T^{2} \)
97 \( 1 - 9968098 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64807893876384547387021669959, −11.33023705772055506535114603085, −9.774292927455621135157787189598, −9.256811001897131496001900092966, −7.82758963286784406788785511872, −6.59144689519885099851781754421, −5.10356500691533893872930739944, −3.29366578871756918340465239756, −2.21565093762334056604785333535, 0, 2.21565093762334056604785333535, 3.29366578871756918340465239756, 5.10356500691533893872930739944, 6.59144689519885099851781754421, 7.82758963286784406788785511872, 9.256811001897131496001900092966, 9.774292927455621135157787189598, 11.33023705772055506535114603085, 12.64807893876384547387021669959

Graph of the $Z$-function along the critical line