L(s) = 1 | + 36·3-s + 125·5-s − 776·7-s − 891·9-s + 124·11-s − 1.30e4·13-s + 4.50e3·15-s − 1.59e4·17-s + 2.05e4·19-s − 2.79e4·21-s + 2.92e4·23-s + 1.56e4·25-s − 1.10e5·27-s − 2.21e5·29-s + 1.09e5·31-s + 4.46e3·33-s − 9.70e4·35-s + 7.34e4·37-s − 4.70e5·39-s + 1.27e4·41-s − 2.90e5·43-s − 1.11e5·45-s − 1.26e6·47-s − 2.21e5·49-s − 5.74e5·51-s − 3.95e5·53-s + 1.55e4·55-s + ⋯ |
L(s) = 1 | + 0.769·3-s + 0.447·5-s − 0.855·7-s − 0.407·9-s + 0.0280·11-s − 1.65·13-s + 0.344·15-s − 0.787·17-s + 0.686·19-s − 0.658·21-s + 0.500·23-s + 1/5·25-s − 1.08·27-s − 1.68·29-s + 0.661·31-s + 0.0216·33-s − 0.382·35-s + 0.238·37-s − 1.27·39-s + 0.0289·41-s − 0.557·43-s − 0.182·45-s − 1.78·47-s − 0.268·49-s − 0.606·51-s − 0.365·53-s + 0.0125·55-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(80s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−p3T |
good | 3 | 1−4p2T+p7T2 |
| 7 | 1+776T+p7T2 |
| 11 | 1−124T+p7T2 |
| 13 | 1+13082T+p7T2 |
| 17 | 1+15950T+p7T2 |
| 19 | 1−20516T+p7T2 |
| 23 | 1−29224T+p7T2 |
| 29 | 1+221482T+p7T2 |
| 31 | 1−109760T+p7T2 |
| 37 | 1−73422T+p7T2 |
| 41 | 1−12762T+p7T2 |
| 43 | 1+290548T+p7T2 |
| 47 | 1+1269152T+p7T2 |
| 53 | 1+395778T+p7T2 |
| 59 | 1+421492T+p7T2 |
| 61 | 1+2122250T+p7T2 |
| 67 | 1−3132868T+p7T2 |
| 71 | 1−5376552T+p7T2 |
| 73 | 1−4985466T+p7T2 |
| 79 | 1+3867504T+p7T2 |
| 83 | 1−6190196T+p7T2 |
| 89 | 1−1124394T+p7T2 |
| 97 | 1−9968098T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64807893876384547387021669959, −11.33023705772055506535114603085, −9.774292927455621135157787189598, −9.256811001897131496001900092966, −7.82758963286784406788785511872, −6.59144689519885099851781754421, −5.10356500691533893872930739944, −3.29366578871756918340465239756, −2.21565093762334056604785333535, 0,
2.21565093762334056604785333535, 3.29366578871756918340465239756, 5.10356500691533893872930739944, 6.59144689519885099851781754421, 7.82758963286784406788785511872, 9.256811001897131496001900092966, 9.774292927455621135157787189598, 11.33023705772055506535114603085, 12.64807893876384547387021669959