L(s) = 1 | + 204·3-s + 625·5-s − 5.43e3·7-s + 2.19e4·9-s − 7.39e4·11-s − 1.14e5·13-s + 1.27e5·15-s + 4.16e4·17-s − 1.05e6·19-s − 1.10e6·21-s − 1.59e6·23-s + 3.90e5·25-s + 4.59e5·27-s + 2.18e6·29-s + 9.61e6·31-s − 1.50e7·33-s − 3.39e6·35-s + 4.79e6·37-s − 2.33e7·39-s + 9.53e6·41-s + 1.34e7·43-s + 1.37e7·45-s − 1.14e7·47-s − 1.08e7·49-s + 8.50e6·51-s + 5.36e7·53-s − 4.62e7·55-s + ⋯ |
L(s) = 1 | + 1.45·3-s + 0.447·5-s − 0.855·7-s + 1.11·9-s − 1.52·11-s − 1.11·13-s + 0.650·15-s + 0.121·17-s − 1.86·19-s − 1.24·21-s − 1.19·23-s + 1/5·25-s + 0.166·27-s + 0.573·29-s + 1.87·31-s − 2.21·33-s − 0.382·35-s + 0.421·37-s − 1.61·39-s + 0.526·41-s + 0.600·43-s + 0.498·45-s − 0.342·47-s − 0.268·49-s + 0.176·51-s + 0.933·53-s − 0.680·55-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)−Λ(10−s)
Λ(s)=(=(80s/2ΓC(s+9/2)L(s)−Λ(1−s)
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−p4T |
good | 3 | 1−68pT+p9T2 |
| 7 | 1+776pT+p9T2 |
| 11 | 1+73932T+p9T2 |
| 13 | 1+114514T+p9T2 |
| 17 | 1−41682T+p9T2 |
| 19 | 1+1057460T+p9T2 |
| 23 | 1+1599336T+p9T2 |
| 29 | 1−2184510T+p9T2 |
| 31 | 1−9619648T+p9T2 |
| 37 | 1−4799942T+p9T2 |
| 41 | 1−9531882T+p9T2 |
| 43 | 1−13464484T+p9T2 |
| 47 | 1+11441952T+p9T2 |
| 53 | 1−53615766T+p9T2 |
| 59 | 1+81862620T+p9T2 |
| 61 | 1+104691298T+p9T2 |
| 67 | 1+2098076pT+p9T2 |
| 71 | 1+97098792T+p9T2 |
| 73 | 1−171848906T+p9T2 |
| 79 | 1−117380080T+p9T2 |
| 83 | 1+323637636T+p9T2 |
| 89 | 1+894379110T+p9T2 |
| 97 | 1−232678562T+p9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.42934237763799951212056984893, −10.37131710355605936260390695013, −9.763972546196520475806975697300, −8.528222667281485992275981306611, −7.65521220020599115408414540802, −6.19492378195620288775281631842, −4.46740088568152008898193492567, −2.85207143831355368773919282654, −2.26613149917669568652689170921, 0,
2.26613149917669568652689170921, 2.85207143831355368773919282654, 4.46740088568152008898193492567, 6.19492378195620288775281631842, 7.65521220020599115408414540802, 8.528222667281485992275981306611, 9.763972546196520475806975697300, 10.37131710355605936260390695013, 12.42934237763799951212056984893