L(s) = 1 | + 2.82·3-s − 2.82·7-s + 5.00·9-s + 5.65·11-s + 2·13-s − 2·17-s − 8.00·21-s + 2.82·23-s + 5.65·27-s + 6·29-s − 5.65·31-s + 16.0·33-s + 10·37-s + 5.65·39-s + 2·41-s − 8.48·43-s − 2.82·47-s + 1.00·49-s − 5.65·51-s − 6·53-s − 11.3·59-s − 2·61-s − 14.1·63-s − 2.82·67-s + 8.00·69-s − 5.65·71-s + 6·73-s + ⋯ |
L(s) = 1 | + 1.63·3-s − 1.06·7-s + 1.66·9-s + 1.70·11-s + 0.554·13-s − 0.485·17-s − 1.74·21-s + 0.589·23-s + 1.08·27-s + 1.11·29-s − 1.01·31-s + 2.78·33-s + 1.64·37-s + 0.905·39-s + 0.312·41-s − 1.29·43-s − 0.412·47-s + 0.142·49-s − 0.792·51-s − 0.824·53-s − 1.47·59-s − 0.256·61-s − 1.78·63-s − 0.345·67-s + 0.963·69-s − 0.671·71-s + 0.702·73-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.647263299 |
L(21) |
≈ |
2.647263299 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−2.82T+3T2 |
| 7 | 1+2.82T+7T2 |
| 11 | 1−5.65T+11T2 |
| 13 | 1−2T+13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1+19T2 |
| 23 | 1−2.82T+23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+5.65T+31T2 |
| 37 | 1−10T+37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+8.48T+43T2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+11.3T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+2.82T+67T2 |
| 71 | 1+5.65T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+11.3T+79T2 |
| 83 | 1−2.82T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.841080230976107745397994889488, −9.257165327628810739427304201856, −8.810139012028636033415322418102, −7.85576160174656386917305477794, −6.80132253934060211074539515319, −6.24697705176838528166337922019, −4.43821910497114992227960235246, −3.58906732979012245646385896249, −2.88298824871583873851569545601, −1.49471919423093806973675175961,
1.49471919423093806973675175961, 2.88298824871583873851569545601, 3.58906732979012245646385896249, 4.43821910497114992227960235246, 6.24697705176838528166337922019, 6.80132253934060211074539515319, 7.85576160174656386917305477794, 8.810139012028636033415322418102, 9.257165327628810739427304201856, 9.841080230976107745397994889488