Properties

Label 2-800-1.1-c1-0-8
Degree $2$
Conductor $800$
Sign $1$
Analytic cond. $6.38803$
Root an. cond. $2.52745$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·3-s − 2.82·7-s + 5.00·9-s + 5.65·11-s + 2·13-s − 2·17-s − 8.00·21-s + 2.82·23-s + 5.65·27-s + 6·29-s − 5.65·31-s + 16.0·33-s + 10·37-s + 5.65·39-s + 2·41-s − 8.48·43-s − 2.82·47-s + 1.00·49-s − 5.65·51-s − 6·53-s − 11.3·59-s − 2·61-s − 14.1·63-s − 2.82·67-s + 8.00·69-s − 5.65·71-s + 6·73-s + ⋯
L(s)  = 1  + 1.63·3-s − 1.06·7-s + 1.66·9-s + 1.70·11-s + 0.554·13-s − 0.485·17-s − 1.74·21-s + 0.589·23-s + 1.08·27-s + 1.11·29-s − 1.01·31-s + 2.78·33-s + 1.64·37-s + 0.905·39-s + 0.312·41-s − 1.29·43-s − 0.412·47-s + 0.142·49-s − 0.792·51-s − 0.824·53-s − 1.47·59-s − 0.256·61-s − 1.78·63-s − 0.345·67-s + 0.963·69-s − 0.671·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(6.38803\)
Root analytic conductor: \(2.52745\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.647263299\)
\(L(\frac12)\) \(\approx\) \(2.647263299\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 2.82T + 3T^{2} \)
7 \( 1 + 2.82T + 7T^{2} \)
11 \( 1 - 5.65T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 2.82T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 8.48T + 43T^{2} \)
47 \( 1 + 2.82T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 11.3T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 2.82T + 67T^{2} \)
71 \( 1 + 5.65T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 2.82T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.841080230976107745397994889488, −9.257165327628810739427304201856, −8.810139012028636033415322418102, −7.85576160174656386917305477794, −6.80132253934060211074539515319, −6.24697705176838528166337922019, −4.43821910497114992227960235246, −3.58906732979012245646385896249, −2.88298824871583873851569545601, −1.49471919423093806973675175961, 1.49471919423093806973675175961, 2.88298824871583873851569545601, 3.58906732979012245646385896249, 4.43821910497114992227960235246, 6.24697705176838528166337922019, 6.80132253934060211074539515319, 7.85576160174656386917305477794, 8.810139012028636033415322418102, 9.257165327628810739427304201856, 9.841080230976107745397994889488

Graph of the $Z$-function along the critical line