L(s) = 1 | + (−0.951 − 0.309i)3-s + (−0.809 − 0.587i)5-s + 1.61i·7-s + (1.30 + 0.951i)13-s + (0.587 + 0.809i)15-s + (−0.587 + 0.190i)19-s + (0.500 − 1.53i)21-s + (0.587 + 0.809i)23-s + (0.309 + 0.951i)25-s + (0.587 + 0.809i)27-s + (−0.190 + 0.587i)29-s + (0.951 − 0.309i)31-s + (0.951 − 1.30i)35-s + (0.809 + 0.587i)37-s + (−0.951 − 1.30i)39-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.309i)3-s + (−0.809 − 0.587i)5-s + 1.61i·7-s + (1.30 + 0.951i)13-s + (0.587 + 0.809i)15-s + (−0.587 + 0.190i)19-s + (0.500 − 1.53i)21-s + (0.587 + 0.809i)23-s + (0.309 + 0.951i)25-s + (0.587 + 0.809i)27-s + (−0.190 + 0.587i)29-s + (0.951 − 0.309i)31-s + (0.951 − 1.30i)35-s + (0.809 + 0.587i)37-s + (−0.951 − 1.30i)39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.612−0.790i)Λ(1−s)
Λ(s)=(=(800s/2ΓC(s)L(s)(0.612−0.790i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.612−0.790i
|
Analytic conductor: |
0.399252 |
Root analytic conductor: |
0.631863 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(511,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :0), 0.612−0.790i)
|
Particular Values
L(21) |
≈ |
0.5641007637 |
L(21) |
≈ |
0.5641007637 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.809+0.587i)T |
good | 3 | 1+(0.951+0.309i)T+(0.809+0.587i)T2 |
| 7 | 1−1.61iT−T2 |
| 11 | 1+(−0.309+0.951i)T2 |
| 13 | 1+(−1.30−0.951i)T+(0.309+0.951i)T2 |
| 17 | 1+(−0.809+0.587i)T2 |
| 19 | 1+(0.587−0.190i)T+(0.809−0.587i)T2 |
| 23 | 1+(−0.587−0.809i)T+(−0.309+0.951i)T2 |
| 29 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 31 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 37 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 41 | 1+(0.309+0.951i)T2 |
| 43 | 1+0.618iT−T2 |
| 47 | 1+(1.53+0.5i)T+(0.809+0.587i)T2 |
| 53 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 59 | 1+(−0.363+0.5i)T+(−0.309−0.951i)T2 |
| 61 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 67 | 1+(0.809−0.587i)T2 |
| 71 | 1+(−1.53−0.5i)T+(0.809+0.587i)T2 |
| 73 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 79 | 1+(0.587+0.190i)T+(0.809+0.587i)T2 |
| 83 | 1+(0.951−0.309i)T+(0.809−0.587i)T2 |
| 89 | 1+(0.309−0.951i)T2 |
| 97 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13235746859653710027954389613, −9.568961502346711834596502097167, −8.717981016387441683898159566088, −8.333387192106487678352513901161, −6.93563737475737013129668415588, −6.09735624353967895357515333516, −5.44528026384403134791621532595, −4.43959128520167464188661590950, −3.16359254788662527190539733778, −1.50269268871359637148224907544,
0.72410527832944070341814738241, 3.07466700820151543754262244854, 4.07085834810941884673309395035, 4.79450702754302185612680932296, 6.16339941026947681820757163648, 6.70994498706297363980216116141, 7.82178584472071459942098804806, 8.359431168317510759850937031981, 9.916495128276396188435742587749, 10.76421290348671592221019667730