L(s) = 1 | + (−0.951 − 0.309i)3-s + (−0.809 − 0.587i)5-s + 1.61i·7-s + (1.30 + 0.951i)13-s + (0.587 + 0.809i)15-s + (−0.587 + 0.190i)19-s + (0.500 − 1.53i)21-s + (0.587 + 0.809i)23-s + (0.309 + 0.951i)25-s + (0.587 + 0.809i)27-s + (−0.190 + 0.587i)29-s + (0.951 − 0.309i)31-s + (0.951 − 1.30i)35-s + (0.809 + 0.587i)37-s + (−0.951 − 1.30i)39-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.309i)3-s + (−0.809 − 0.587i)5-s + 1.61i·7-s + (1.30 + 0.951i)13-s + (0.587 + 0.809i)15-s + (−0.587 + 0.190i)19-s + (0.500 − 1.53i)21-s + (0.587 + 0.809i)23-s + (0.309 + 0.951i)25-s + (0.587 + 0.809i)27-s + (−0.190 + 0.587i)29-s + (0.951 − 0.309i)31-s + (0.951 − 1.30i)35-s + (0.809 + 0.587i)37-s + (−0.951 − 1.30i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 - 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 - 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5641007637\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5641007637\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (0.951 + 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 - 1.61iT - T^{2} \) |
| 11 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.587 - 0.190i)T + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.587 - 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.951 + 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 0.618iT - T^{2} \) |
| 47 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 71 | \( 1 + (-1.53 - 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.587 + 0.190i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13235746859653710027954389613, −9.568961502346711834596502097167, −8.717981016387441683898159566088, −8.333387192106487678352513901161, −6.93563737475737013129668415588, −6.09735624353967895357515333516, −5.44528026384403134791621532595, −4.43959128520167464188661590950, −3.16359254788662527190539733778, −1.50269268871359637148224907544,
0.72410527832944070341814738241, 3.07466700820151543754262244854, 4.07085834810941884673309395035, 4.79450702754302185612680932296, 6.16339941026947681820757163648, 6.70994498706297363980216116141, 7.82178584472071459942098804806, 8.359431168317510759850937031981, 9.916495128276396188435742587749, 10.76421290348671592221019667730