L(s) = 1 | + (−1.18 − 2.32i)3-s + (0.966 + 2.01i)5-s + (0.0730 + 0.0730i)7-s + (−2.24 + 3.09i)9-s + (−0.496 − 0.683i)11-s + (0.983 + 6.20i)13-s + (3.54 − 4.64i)15-s + (−4.79 − 2.44i)17-s + (2.38 + 7.33i)19-s + (0.0833 − 0.256i)21-s + (−0.254 + 1.60i)23-s + (−3.13 + 3.89i)25-s + (2.13 + 0.337i)27-s + (8.34 + 2.71i)29-s + (−6.65 + 2.16i)31-s + ⋯ |
L(s) = 1 | + (−0.684 − 1.34i)3-s + (0.432 + 0.901i)5-s + (0.0276 + 0.0276i)7-s + (−0.749 + 1.03i)9-s + (−0.149 − 0.206i)11-s + (0.272 + 1.72i)13-s + (0.915 − 1.19i)15-s + (−1.16 − 0.592i)17-s + (0.546 + 1.68i)19-s + (0.0181 − 0.0560i)21-s + (−0.0530 + 0.334i)23-s + (−0.626 + 0.779i)25-s + (0.410 + 0.0650i)27-s + (1.55 + 0.503i)29-s + (−1.19 + 0.388i)31-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.761−0.648i)Λ(2−s)
Λ(s)=(=(800s/2ΓC(s+1/2)L(s)(0.761−0.648i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.761−0.648i
|
Analytic conductor: |
6.38803 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(223,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :1/2), 0.761−0.648i)
|
Particular Values
L(1) |
≈ |
0.984587+0.362540i |
L(21) |
≈ |
0.984587+0.362540i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.966−2.01i)T |
good | 3 | 1+(1.18+2.32i)T+(−1.76+2.42i)T2 |
| 7 | 1+(−0.0730−0.0730i)T+7iT2 |
| 11 | 1+(0.496+0.683i)T+(−3.39+10.4i)T2 |
| 13 | 1+(−0.983−6.20i)T+(−12.3+4.01i)T2 |
| 17 | 1+(4.79+2.44i)T+(9.99+13.7i)T2 |
| 19 | 1+(−2.38−7.33i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.254−1.60i)T+(−21.8−7.10i)T2 |
| 29 | 1+(−8.34−2.71i)T+(23.4+17.0i)T2 |
| 31 | 1+(6.65−2.16i)T+(25.0−18.2i)T2 |
| 37 | 1+(0.0262−0.00416i)T+(35.1−11.4i)T2 |
| 41 | 1+(−4.26−3.09i)T+(12.6+38.9i)T2 |
| 43 | 1+(−1.83+1.83i)T−43iT2 |
| 47 | 1+(−5.86+2.99i)T+(27.6−38.0i)T2 |
| 53 | 1+(−0.916+0.467i)T+(31.1−42.8i)T2 |
| 59 | 1+(−5.94−4.32i)T+(18.2+56.1i)T2 |
| 61 | 1+(1.59−1.15i)T+(18.8−58.0i)T2 |
| 67 | 1+(0.166−0.326i)T+(−39.3−54.2i)T2 |
| 71 | 1+(−6.56−2.13i)T+(57.4+41.7i)T2 |
| 73 | 1+(0.655+0.103i)T+(69.4+22.5i)T2 |
| 79 | 1+(1.26−3.88i)T+(−63.9−46.4i)T2 |
| 83 | 1+(6.93+3.53i)T+(48.7+67.1i)T2 |
| 89 | 1+(−9.44−12.9i)T+(−27.5+84.6i)T2 |
| 97 | 1+(−1.11−2.19i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57693952592304824468621349121, −9.546873762947249604693582293983, −8.564043571431006130191411217481, −7.40191198326252025794901220496, −6.84875499470089624132718409556, −6.24338548308869620059547150436, −5.37347784328672652133896374880, −3.88586121848673359853710959335, −2.39377897873565473613468174033, −1.48653673881592078767576635141,
0.58925407223284218165361835874, 2.65208838672684217451558249305, 4.07974226767765831828832462708, 4.83259347928931073022225422763, 5.48580118556515358812789547450, 6.32742647691056521644935178797, 7.76016316953778837494315410722, 8.808733981199198670621244998773, 9.354153187844043386299485038822, 10.30834286959137889228365802493