L(s) = 1 | + i·3-s + 11-s + i·17-s − 19-s + i·27-s + i·33-s − 41-s − 2i·43-s − 49-s − 51-s − i·57-s + 2·59-s − i·67-s − i·73-s − 81-s + ⋯ |
L(s) = 1 | + i·3-s + 11-s + i·17-s − 19-s + i·27-s + i·33-s − 41-s − 2i·43-s − 49-s − 51-s − i·57-s + 2·59-s − i·67-s − i·73-s − 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.024087124\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.024087124\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + 2iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - 2T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT - T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 + 2iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48192462057179431669655267948, −9.888970010120026042719453466201, −8.974148495807358145771356534967, −8.360859442106513473343411294213, −7.05938144605083630950688159385, −6.24893824838174372412763924405, −5.13329225274981955757854630763, −4.14552487292280802101351485904, −3.54888068522024869069231136553, −1.84068117969644956727528700491,
1.27683073765345448383954374058, 2.49032747626348307530879777677, 3.89058780516858376452091421139, 4.96042355551600179416120835091, 6.30808991530566763121933921838, 6.76979535282880298690896417891, 7.66976433374811804530926445176, 8.524658810398930347786710734400, 9.433726876346548985088267965846, 10.26471179692433523487791927714