L(s) = 1 | + i·3-s + 11-s + i·17-s − 19-s + i·27-s + i·33-s − 41-s − 2i·43-s − 49-s − 51-s − i·57-s + 2·59-s − i·67-s − i·73-s − 81-s + ⋯ |
L(s) = 1 | + i·3-s + 11-s + i·17-s − 19-s + i·27-s + i·33-s − 41-s − 2i·43-s − 49-s − 51-s − i·57-s + 2·59-s − i·67-s − i·73-s − 81-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.447−0.894i)Λ(1−s)
Λ(s)=(=(800s/2ΓC(s)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
0.399252 |
Root analytic conductor: |
0.631863 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :0), 0.447−0.894i)
|
Particular Values
L(21) |
≈ |
1.024087124 |
L(21) |
≈ |
1.024087124 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−iT−T2 |
| 7 | 1+T2 |
| 11 | 1−T+T2 |
| 13 | 1+T2 |
| 17 | 1−iT−T2 |
| 19 | 1+T+T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1+T+T2 |
| 43 | 1+2iT−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1−2T+T2 |
| 61 | 1−T2 |
| 67 | 1+iT−T2 |
| 71 | 1−T2 |
| 73 | 1+iT−T2 |
| 79 | 1−T2 |
| 83 | 1−iT−T2 |
| 89 | 1−T+T2 |
| 97 | 1+2iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48192462057179431669655267948, −9.888970010120026042719453466201, −8.974148495807358145771356534967, −8.360859442106513473343411294213, −7.05938144605083630950688159385, −6.24893824838174372412763924405, −5.13329225274981955757854630763, −4.14552487292280802101351485904, −3.54888068522024869069231136553, −1.84068117969644956727528700491,
1.27683073765345448383954374058, 2.49032747626348307530879777677, 3.89058780516858376452091421139, 4.96042355551600179416120835091, 6.30808991530566763121933921838, 6.76979535282880298690896417891, 7.66976433374811804530926445176, 8.524658810398930347786710734400, 9.433726876346548985088267965846, 10.26471179692433523487791927714