L(s) = 1 | + (0.996 + 0.0871i)2-s + (0.984 + 0.173i)4-s + (1.77 + 1.35i)5-s + (−1.16 − 0.813i)7-s + (0.965 + 0.258i)8-s + (1.65 + 1.50i)10-s + (−0.290 + 0.797i)11-s + (0.499 + 5.70i)13-s + (−1.08 − 0.911i)14-s + (0.939 + 0.342i)16-s + (6.26 − 1.67i)17-s + (0.472 − 0.272i)19-s + (1.51 + 1.64i)20-s + (−0.358 + 0.768i)22-s + (−2.49 − 3.56i)23-s + ⋯ |
L(s) = 1 | + (0.704 + 0.0616i)2-s + (0.492 + 0.0868i)4-s + (0.795 + 0.605i)5-s + (−0.439 − 0.307i)7-s + (0.341 + 0.0915i)8-s + (0.523 + 0.475i)10-s + (−0.0874 + 0.240i)11-s + (0.138 + 1.58i)13-s + (−0.290 − 0.243i)14-s + (0.234 + 0.0855i)16-s + (1.51 − 0.407i)17-s + (0.108 − 0.0625i)19-s + (0.339 + 0.367i)20-s + (−0.0764 + 0.163i)22-s + (−0.520 − 0.743i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.767 - 0.641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.767 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.49462 + 0.905132i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.49462 + 0.905132i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.996 - 0.0871i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.77 - 1.35i)T \) |
good | 7 | \( 1 + (1.16 + 0.813i)T + (2.39 + 6.57i)T^{2} \) |
| 11 | \( 1 + (0.290 - 0.797i)T + (-8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (-0.499 - 5.70i)T + (-12.8 + 2.25i)T^{2} \) |
| 17 | \( 1 + (-6.26 + 1.67i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.472 + 0.272i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.49 + 3.56i)T + (-7.86 + 21.6i)T^{2} \) |
| 29 | \( 1 + (-2.18 + 1.83i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (1.43 - 8.12i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (-0.0155 - 0.0581i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-6.57 + 7.84i)T + (-7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (3.71 + 7.96i)T + (-27.6 + 32.9i)T^{2} \) |
| 47 | \( 1 + (4.34 - 6.20i)T + (-16.0 - 44.1i)T^{2} \) |
| 53 | \( 1 + (3.24 - 3.24i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.79 + 0.652i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (0.615 + 3.49i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-1.81 + 0.158i)T + (65.9 - 11.6i)T^{2} \) |
| 71 | \( 1 + (-4.81 - 2.77i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.64 - 9.85i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (8.97 + 10.6i)T + (-13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-0.723 + 8.27i)T + (-81.7 - 14.4i)T^{2} \) |
| 89 | \( 1 + (4.25 + 7.36i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (14.1 - 6.59i)T + (62.3 - 74.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27876188515224640202675504619, −9.742028241338284072215974203187, −8.732747505033388484611009299515, −7.37777468837415878755355597501, −6.78582315891911566579554438476, −6.00115200240720579436214348935, −5.03477868752743319500338951275, −3.90364548676372794274270234779, −2.90160474990630983399770271029, −1.71727445756237531854807174919,
1.20368806808034859182551038209, 2.70818813858488435213407244338, 3.60137116631578872685919686146, 4.98622671507758402715019606024, 5.76284297989812337667341436911, 6.17706294159472754740411936336, 7.70359737288234706906414739897, 8.286098835450069762747079827753, 9.671072960852996599390426772281, 9.968774626745706083642586468554