L(s) = 1 | + (−0.819 − 0.573i)2-s + (0.342 + 0.939i)4-s + (2.23 + 0.138i)5-s + (0.660 + 1.41i)7-s + (0.258 − 0.965i)8-s + (−1.74 − 1.39i)10-s + (−2.49 − 2.97i)11-s + (−2.53 − 3.62i)13-s + (0.271 − 1.53i)14-s + (−0.766 + 0.642i)16-s + (−1.52 − 5.69i)17-s + (5.43 − 3.13i)19-s + (0.633 + 2.14i)20-s + (0.338 + 3.87i)22-s + (1.84 + 0.862i)23-s + ⋯ |
L(s) = 1 | + (−0.579 − 0.405i)2-s + (0.171 + 0.469i)4-s + (0.998 + 0.0618i)5-s + (0.249 + 0.535i)7-s + (0.0915 − 0.341i)8-s + (−0.553 − 0.440i)10-s + (−0.753 − 0.897i)11-s + (−0.703 − 1.00i)13-s + (0.0725 − 0.411i)14-s + (−0.191 + 0.160i)16-s + (−0.370 − 1.38i)17-s + (1.24 − 0.719i)19-s + (0.141 + 0.479i)20-s + (0.0722 + 0.825i)22-s + (0.385 + 0.179i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.407 + 0.913i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.407 + 0.913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09672 - 0.711671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09672 - 0.711671i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.819 + 0.573i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 - 0.138i)T \) |
good | 7 | \( 1 + (-0.660 - 1.41i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (2.49 + 2.97i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (2.53 + 3.62i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (1.52 + 5.69i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-5.43 + 3.13i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.84 - 0.862i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (-0.651 - 3.69i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-4.48 + 1.63i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-5.27 + 1.41i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (1.36 + 0.240i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (0.741 - 8.47i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (-2.58 + 1.20i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (4.58 + 4.58i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.286 + 0.240i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (-3.34 - 1.21i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-9.14 + 6.40i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (-13.8 - 7.99i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (15.8 + 4.24i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-0.515 + 0.0908i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (6.06 - 8.66i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (-2.59 - 4.49i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (11.4 + 1.00i)T + (95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.888729887151830341785304304345, −9.462474505552592981263005617706, −8.538361197422116628247429097642, −7.68086919438309272265377456376, −6.73718548784206088579254588621, −5.47525407539395104074006943091, −5.02443112586853991753584432027, −2.96416996385704323975687292578, −2.58165002108678989647358273318, −0.844635566270336958957269934764,
1.45403985829212994019511097804, 2.46981137634636580355701547190, 4.27819829446151300066200739437, 5.18753886297057327330452421998, 6.16418504607219292152342361024, 7.03708424254281772781850052955, 7.78713747940432436473061291325, 8.749139035930516951172628074083, 9.744711756093697865991404071261, 10.09041301125649370642896120730