L(s) = 1 | + (−0.819 − 0.573i)2-s + (0.342 + 0.939i)4-s + (−2.07 + 0.845i)5-s + (0.101 + 0.217i)7-s + (0.258 − 0.965i)8-s + (2.18 + 0.494i)10-s + (−2.07 − 2.47i)11-s + (1.10 + 1.57i)13-s + (0.0417 − 0.236i)14-s + (−0.766 + 0.642i)16-s + (−0.935 − 3.48i)17-s + (1.18 − 0.683i)19-s + (−1.50 − 1.65i)20-s + (0.281 + 3.21i)22-s + (6.16 + 2.87i)23-s + ⋯ |
L(s) = 1 | + (−0.579 − 0.405i)2-s + (0.171 + 0.469i)4-s + (−0.925 + 0.378i)5-s + (0.0383 + 0.0823i)7-s + (0.0915 − 0.341i)8-s + (0.689 + 0.156i)10-s + (−0.625 − 0.745i)11-s + (0.306 + 0.437i)13-s + (0.0111 − 0.0632i)14-s + (−0.191 + 0.160i)16-s + (−0.226 − 0.846i)17-s + (0.271 − 0.156i)19-s + (−0.335 − 0.370i)20-s + (0.0599 + 0.685i)22-s + (1.28 + 0.599i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.688 + 0.725i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.688 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.813909 - 0.349559i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.813909 - 0.349559i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.819 + 0.573i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.07 - 0.845i)T \) |
good | 7 | \( 1 + (-0.101 - 0.217i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (2.07 + 2.47i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-1.10 - 1.57i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (0.935 + 3.48i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.18 + 0.683i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.16 - 2.87i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (-0.340 - 1.92i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-2.42 + 0.881i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-5.53 + 1.48i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (0.258 + 0.0455i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-0.573 + 6.54i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (-11.9 + 5.56i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (-9.15 - 9.15i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4.98 - 4.18i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (14.0 + 5.13i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (3.34 - 2.34i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (9.56 + 5.52i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.32 - 0.623i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-2.06 + 0.364i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-5.39 + 7.69i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (1.90 + 3.29i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.17 + 0.627i)T + (95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35065191535264692936918813204, −9.085666651442330158011082502275, −8.656224425324581534876195622144, −7.50614573113008858025653856687, −7.10054188582902241828664664199, −5.77013862030365873024988046438, −4.55021063034157453616524033609, −3.42783869526529876372874195802, −2.57901125544809184528306762422, −0.71387179873845601033383829080,
1.00692079396925338513844010052, 2.72203823097237944862842218439, 4.14248419385253631166571822059, 4.99698696693952518817940812754, 6.10182304256954786874073946650, 7.18336142390425788410786620697, 7.83356266921364276165205641567, 8.536579855132535142913624700872, 9.353818629906434658023514366708, 10.42121642388789185954677875160