L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s + 5-s − 1.00·6-s + (−0.707 + 0.707i)7-s + (−0.707 − 0.707i)8-s + (0.707 − 0.707i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s − 13-s + 1.00i·14-s + (−0.707 − 0.707i)15-s − 1.00·16-s + (1 − i)17-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s + 5-s − 1.00·6-s + (−0.707 + 0.707i)7-s + (−0.707 − 0.707i)8-s + (0.707 − 0.707i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s − 13-s + 1.00i·14-s + (−0.707 − 0.707i)15-s − 1.00·16-s + (1 − i)17-s + ⋯ |
Λ(s)=(=(812s/2ΓC(s)L(s)(−0.560+0.828i)Λ(1−s)
Λ(s)=(=(812s/2ΓC(s)L(s)(−0.560+0.828i)Λ(1−s)
Degree: |
2 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
−0.560+0.828i
|
Analytic conductor: |
0.405240 |
Root analytic conductor: |
0.636585 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(447,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 812, ( :0), −0.560+0.828i)
|
Particular Values
L(21) |
≈ |
1.185860846 |
L(21) |
≈ |
1.185860846 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 7 | 1+(0.707−0.707i)T |
| 29 | 1−iT |
good | 3 | 1+(0.707+0.707i)T+iT2 |
| 5 | 1−T+T2 |
| 11 | 1+(−0.707+0.707i)T−iT2 |
| 13 | 1+T+T2 |
| 17 | 1+(−1+i)T−iT2 |
| 19 | 1+iT2 |
| 23 | 1−T2 |
| 31 | 1+(−0.707−0.707i)T+iT2 |
| 37 | 1+(1−i)T−iT2 |
| 41 | 1+(−1−i)T+iT2 |
| 43 | 1+(−0.707+0.707i)T−iT2 |
| 47 | 1+(−0.707+0.707i)T−iT2 |
| 53 | 1+T+T2 |
| 59 | 1−1.41T+T2 |
| 61 | 1−iT2 |
| 67 | 1−1.41T+T2 |
| 71 | 1+T2 |
| 73 | 1+iT2 |
| 79 | 1+(0.707−0.707i)T−iT2 |
| 83 | 1+1.41T+T2 |
| 89 | 1−iT2 |
| 97 | 1+(−1−i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09681437149126920971043608558, −9.622521580747363288553250416430, −8.825992507029401808916993490060, −7.06936210023868316045297196296, −6.43384101726823293800780168390, −5.66457160963702274612591847344, −5.12212352678925465463818116964, −3.44528831791808685943812223509, −2.50223217345007271955091930500, −1.16408216204195686297358452815,
2.31772335607991590560388742198, 3.85970809793892810819533966428, 4.50703397517972438636839353799, 5.63344496041064564280497609817, 6.07358667201616527628982980510, 7.10103021722078039993648904651, 7.88662445369547412769383547768, 9.372490254713654281028812051233, 9.861070769290359387387494700874, 10.57855653999425758425935012046