L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s + 5-s − 1.00·6-s + (−0.707 + 0.707i)7-s + (−0.707 − 0.707i)8-s + (0.707 − 0.707i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s − 13-s + 1.00i·14-s + (−0.707 − 0.707i)15-s − 1.00·16-s + (1 − i)17-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s + 5-s − 1.00·6-s + (−0.707 + 0.707i)7-s + (−0.707 − 0.707i)8-s + (0.707 − 0.707i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s − 13-s + 1.00i·14-s + (−0.707 − 0.707i)15-s − 1.00·16-s + (1 − i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 + 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 + 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.185860846\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.185860846\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 29 | \( 1 - iT \) |
good | 3 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + (-1 - i)T + iT^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 47 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 - 1.41T + T^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09681437149126920971043608558, −9.622521580747363288553250416430, −8.825992507029401808916993490060, −7.06936210023868316045297196296, −6.43384101726823293800780168390, −5.66457160963702274612591847344, −5.12212352678925465463818116964, −3.44528831791808685943812223509, −2.50223217345007271955091930500, −1.16408216204195686297358452815,
2.31772335607991590560388742198, 3.85970809793892810819533966428, 4.50703397517972438636839353799, 5.63344496041064564280497609817, 6.07358667201616527628982980510, 7.10103021722078039993648904651, 7.88662445369547412769383547768, 9.372490254713654281028812051233, 9.861070769290359387387494700874, 10.57855653999425758425935012046