L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (−0.433 − 0.900i)7-s + (−0.900 − 0.433i)8-s + (−0.781 − 0.623i)9-s + (0.222 + 0.0250i)11-s + (−0.974 − 0.222i)14-s + (−0.900 + 0.433i)16-s + (−0.974 + 0.222i)18-s + (0.158 − 0.158i)22-s + (1.75 − 0.400i)23-s + (0.900 + 0.433i)25-s + (−0.781 + 0.623i)28-s + (−0.433 + 0.900i)29-s + (−0.222 + 0.974i)32-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (−0.433 − 0.900i)7-s + (−0.900 − 0.433i)8-s + (−0.781 − 0.623i)9-s + (0.222 + 0.0250i)11-s + (−0.974 − 0.222i)14-s + (−0.900 + 0.433i)16-s + (−0.974 + 0.222i)18-s + (0.158 − 0.158i)22-s + (1.75 − 0.400i)23-s + (0.900 + 0.433i)25-s + (−0.781 + 0.623i)28-s + (−0.433 + 0.900i)29-s + (−0.222 + 0.974i)32-s + ⋯ |
Λ(s)=(=(812s/2ΓC(s)L(s)(−0.521+0.853i)Λ(1−s)
Λ(s)=(=(812s/2ΓC(s)L(s)(−0.521+0.853i)Λ(1−s)
Degree: |
2 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
−0.521+0.853i
|
Analytic conductor: |
0.405240 |
Root analytic conductor: |
0.636585 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(503,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 812, ( :0), −0.521+0.853i)
|
Particular Values
L(21) |
≈ |
1.149212167 |
L(21) |
≈ |
1.149212167 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.623+0.781i)T |
| 7 | 1+(0.433+0.900i)T |
| 29 | 1+(0.433−0.900i)T |
good | 3 | 1+(0.781+0.623i)T2 |
| 5 | 1+(−0.900−0.433i)T2 |
| 11 | 1+(−0.222−0.0250i)T+(0.974+0.222i)T2 |
| 13 | 1+(−0.222+0.974i)T2 |
| 17 | 1−iT2 |
| 19 | 1+(−0.781+0.623i)T2 |
| 23 | 1+(−1.75+0.400i)T+(0.900−0.433i)T2 |
| 31 | 1+(0.433−0.900i)T2 |
| 37 | 1+(0.189+1.68i)T+(−0.974+0.222i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−1.19−0.752i)T+(0.433+0.900i)T2 |
| 47 | 1+(0.974+0.222i)T2 |
| 53 | 1+(0.277−1.21i)T+(−0.900−0.433i)T2 |
| 59 | 1+T2 |
| 61 | 1+(−0.781−0.623i)T2 |
| 67 | 1+(0.541−0.678i)T+(−0.222−0.974i)T2 |
| 71 | 1+(−0.277−0.347i)T+(−0.222+0.974i)T2 |
| 73 | 1+(−0.433−0.900i)T2 |
| 79 | 1+(0.222+1.97i)T+(−0.974+0.222i)T2 |
| 83 | 1+(0.623+0.781i)T2 |
| 89 | 1+(−0.433+0.900i)T2 |
| 97 | 1+(−0.781+0.623i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54996357261380118268460009511, −9.185674311701639375300079966077, −9.044339732729913238604242935263, −7.36401719895463302437793063088, −6.56642839174760492367994790459, −5.62570282726942069021743606919, −4.59469017798466834568313167181, −3.56773592863378161282438772407, −2.81271668400874590573770523835, −1.03977187993041175460159173928,
2.51936981496033461507104549681, 3.34025302566291355020819175693, 4.75809204178692826791180773183, 5.45856186950826579814149741248, 6.30225833664594189833148158733, 7.13891165424835747891618727983, 8.230676782181550812764760543735, 8.796061156247765358998787011917, 9.617335506014708386630449780734, 10.97877910620312294930708160764