L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (−0.433 − 0.900i)7-s + (−0.900 − 0.433i)8-s + (−0.781 − 0.623i)9-s + (0.222 + 0.0250i)11-s + (−0.974 − 0.222i)14-s + (−0.900 + 0.433i)16-s + (−0.974 + 0.222i)18-s + (0.158 − 0.158i)22-s + (1.75 − 0.400i)23-s + (0.900 + 0.433i)25-s + (−0.781 + 0.623i)28-s + (−0.433 + 0.900i)29-s + (−0.222 + 0.974i)32-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (−0.433 − 0.900i)7-s + (−0.900 − 0.433i)8-s + (−0.781 − 0.623i)9-s + (0.222 + 0.0250i)11-s + (−0.974 − 0.222i)14-s + (−0.900 + 0.433i)16-s + (−0.974 + 0.222i)18-s + (0.158 − 0.158i)22-s + (1.75 − 0.400i)23-s + (0.900 + 0.433i)25-s + (−0.781 + 0.623i)28-s + (−0.433 + 0.900i)29-s + (−0.222 + 0.974i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.521 + 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.521 + 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.149212167\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.149212167\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.623 + 0.781i)T \) |
| 7 | \( 1 + (0.433 + 0.900i)T \) |
| 29 | \( 1 + (0.433 - 0.900i)T \) |
good | 3 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 5 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (-0.222 - 0.0250i)T + (0.974 + 0.222i)T^{2} \) |
| 13 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.781 + 0.623i)T^{2} \) |
| 23 | \( 1 + (-1.75 + 0.400i)T + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (0.433 - 0.900i)T^{2} \) |
| 37 | \( 1 + (0.189 + 1.68i)T + (-0.974 + 0.222i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-1.19 - 0.752i)T + (0.433 + 0.900i)T^{2} \) |
| 47 | \( 1 + (0.974 + 0.222i)T^{2} \) |
| 53 | \( 1 + (0.277 - 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-0.781 - 0.623i)T^{2} \) |
| 67 | \( 1 + (0.541 - 0.678i)T + (-0.222 - 0.974i)T^{2} \) |
| 71 | \( 1 + (-0.277 - 0.347i)T + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.433 - 0.900i)T^{2} \) |
| 79 | \( 1 + (0.222 + 1.97i)T + (-0.974 + 0.222i)T^{2} \) |
| 83 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (-0.433 + 0.900i)T^{2} \) |
| 97 | \( 1 + (-0.781 + 0.623i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54996357261380118268460009511, −9.185674311701639375300079966077, −9.044339732729913238604242935263, −7.36401719895463302437793063088, −6.56642839174760492367994790459, −5.62570282726942069021743606919, −4.59469017798466834568313167181, −3.56773592863378161282438772407, −2.81271668400874590573770523835, −1.03977187993041175460159173928,
2.51936981496033461507104549681, 3.34025302566291355020819175693, 4.75809204178692826791180773183, 5.45856186950826579814149741248, 6.30225833664594189833148158733, 7.13891165424835747891618727983, 8.230676782181550812764760543735, 8.796061156247765358998787011917, 9.617335506014708386630449780734, 10.97877910620312294930708160764