Properties

Label 2-816-1.1-c1-0-5
Degree $2$
Conductor $816$
Sign $1$
Analytic cond. $6.51579$
Root an. cond. $2.55260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 0.561·5-s + 9-s + 2.56·11-s + 4.56·13-s − 0.561·15-s + 17-s − 7.68·19-s + 6.56·23-s − 4.68·25-s + 27-s + 8.24·29-s + 5.12·31-s + 2.56·33-s + 3.12·37-s + 4.56·39-s + 0.561·41-s + 7.68·43-s − 0.561·45-s + 2.87·47-s − 7·49-s + 51-s − 4.24·53-s − 1.43·55-s − 7.68·57-s + 1.12·59-s + 0.876·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.251·5-s + 0.333·9-s + 0.772·11-s + 1.26·13-s − 0.144·15-s + 0.242·17-s − 1.76·19-s + 1.36·23-s − 0.936·25-s + 0.192·27-s + 1.53·29-s + 0.920·31-s + 0.445·33-s + 0.513·37-s + 0.730·39-s + 0.0876·41-s + 1.17·43-s − 0.0837·45-s + 0.419·47-s − 49-s + 0.140·51-s − 0.583·53-s − 0.193·55-s − 1.01·57-s + 0.146·59-s + 0.112·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(816\)    =    \(2^{4} \cdot 3 \cdot 17\)
Sign: $1$
Analytic conductor: \(6.51579\)
Root analytic conductor: \(2.55260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 816,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.978766995\)
\(L(\frac12)\) \(\approx\) \(1.978766995\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 - 2.56T + 11T^{2} \)
13 \( 1 - 4.56T + 13T^{2} \)
19 \( 1 + 7.68T + 19T^{2} \)
23 \( 1 - 6.56T + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 - 5.12T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 - 0.561T + 41T^{2} \)
43 \( 1 - 7.68T + 43T^{2} \)
47 \( 1 - 2.87T + 47T^{2} \)
53 \( 1 + 4.24T + 53T^{2} \)
59 \( 1 - 1.12T + 59T^{2} \)
61 \( 1 - 0.876T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 - 4.24T + 73T^{2} \)
79 \( 1 + 15.3T + 79T^{2} \)
83 \( 1 - 9.12T + 83T^{2} \)
89 \( 1 - 7.12T + 89T^{2} \)
97 \( 1 + 11.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27130891403138175110194025168, −9.182095494256083697936527309150, −8.592584728026646421335721379551, −7.87474422956294230035221221222, −6.68672170180493886756721043112, −6.09897170988790082049841781830, −4.57825805922526271821601755271, −3.84445324458262372292878531070, −2.71643293968403672919408683305, −1.25684556579012388008287058863, 1.25684556579012388008287058863, 2.71643293968403672919408683305, 3.84445324458262372292878531070, 4.57825805922526271821601755271, 6.09897170988790082049841781830, 6.68672170180493886756721043112, 7.87474422956294230035221221222, 8.592584728026646421335721379551, 9.182095494256083697936527309150, 10.27130891403138175110194025168

Graph of the $Z$-function along the critical line