L(s) = 1 | + (0.254 + 1.71i)3-s + 2i·5-s − 0.508i·7-s + (−2.87 + 0.870i)9-s − 4.44·11-s − 1.74·13-s + (−3.42 + 0.508i)15-s + i·17-s − 1.01i·19-s + (0.870 − 0.129i)21-s − 6.34·23-s + 25-s + (−2.22 − 4.69i)27-s + 9.48i·29-s − 4.44i·31-s + ⋯ |
L(s) = 1 | + (0.146 + 0.989i)3-s + 0.894i·5-s − 0.192i·7-s + (−0.956 + 0.290i)9-s − 1.33·11-s − 0.483·13-s + (−0.884 + 0.131i)15-s + 0.242i·17-s − 0.233i·19-s + (0.190 − 0.0281i)21-s − 1.32·23-s + 0.200·25-s + (−0.427 − 0.903i)27-s + 1.76i·29-s − 0.798i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.146i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0546514 - 0.740913i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0546514 - 0.740913i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.254 - 1.71i)T \) |
| 17 | \( 1 - iT \) |
good | 5 | \( 1 - 2iT - 5T^{2} \) |
| 7 | \( 1 + 0.508iT - 7T^{2} \) |
| 11 | \( 1 + 4.44T + 11T^{2} \) |
| 13 | \( 1 + 1.74T + 13T^{2} \) |
| 19 | \( 1 + 1.01iT - 19T^{2} \) |
| 23 | \( 1 + 6.34T + 23T^{2} \) |
| 29 | \( 1 - 9.48iT - 29T^{2} \) |
| 31 | \( 1 + 4.44iT - 31T^{2} \) |
| 37 | \( 1 - 5.48T + 37T^{2} \) |
| 41 | \( 1 + 5.48iT - 41T^{2} \) |
| 43 | \( 1 - 8.88iT - 43T^{2} \) |
| 47 | \( 1 + 5.83T + 47T^{2} \) |
| 53 | \( 1 - 2iT - 53T^{2} \) |
| 59 | \( 1 + 1.01T + 59T^{2} \) |
| 61 | \( 1 + 9.48T + 61T^{2} \) |
| 67 | \( 1 - 2.03iT - 67T^{2} \) |
| 71 | \( 1 + 12.3T + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 - 9.26iT - 79T^{2} \) |
| 83 | \( 1 - 14.7T + 83T^{2} \) |
| 89 | \( 1 - 9.22iT - 89T^{2} \) |
| 97 | \( 1 - 5.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58602552211744027746055000456, −10.04889683455019629013641729221, −9.153091541637911990790713369463, −8.089984451400819442050733984447, −7.40990063899574920536988880908, −6.22225836484393019063155255464, −5.29033885100207806540108034463, −4.35767692772189586075244982287, −3.21832860117570209799117799553, −2.43014767362295847757848378921,
0.33299678212769762720148168354, 1.91408749048543060522335379025, 2.91482721386110105675223266527, 4.49090740942867606002061258439, 5.46235691516356393334928406408, 6.21915915037555927213112499805, 7.48092201936566715633547066580, 8.006065523431502773081282562769, 8.742894008822563586572764614284, 9.714684145200672841122911933138