L(s) = 1 | + (−0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + (1 + i)7-s + 1.00i·9-s + (−0.707 + 0.707i)11-s − 13-s − 1.00i·15-s + (−0.707 + 0.707i)17-s + i·19-s − 1.41i·21-s + (0.707 − 0.707i)23-s + (0.707 − 0.707i)27-s + 1.00·33-s + 1.41i·35-s + (1 − i)37-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + (1 + i)7-s + 1.00i·9-s + (−0.707 + 0.707i)11-s − 13-s − 1.00i·15-s + (−0.707 + 0.707i)17-s + i·19-s − 1.41i·21-s + (0.707 − 0.707i)23-s + (0.707 − 0.707i)27-s + 1.00·33-s + 1.41i·35-s + (1 − i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8776218860\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8776218860\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 5 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + iT^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - 1.41T + T^{2} \) |
| 61 | \( 1 + (1 + i)T + iT^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (1 + i)T + iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63740004381422615501415811904, −9.926363135279425156389304727944, −8.722211292134738269101345978439, −7.82767533845514218559520864467, −7.07154118030382140335380177828, −6.08665811953861083718863794134, −5.40919383684444560551650610540, −4.55193066319256154341603083746, −2.40551878557157946802460722676, −2.04109928179122818228148675544,
1.04707866778644570645640730399, 2.83560256827709327761061770601, 4.47402707240472082279345130148, 4.88376729235795507800230886911, 5.66262821701748551556640648170, 6.88138249481557852209105039249, 7.76711876309596233183770385002, 8.903853738184397068743815816261, 9.590871980742969288491011660424, 10.36527564722934166380455439910