Properties

Label 2-82110-1.1-c1-0-21
Degree $2$
Conductor $82110$
Sign $-1$
Analytic cond. $655.651$
Root an. cond. $25.6056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s − 2·11-s − 12-s − 13-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s + 20-s + 21-s + 2·22-s − 23-s + 24-s + 25-s + 26-s − 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.218·21-s + 0.426·22-s − 0.208·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23\)
Sign: $-1$
Analytic conductor: \(655.651\)
Root analytic conductor: \(25.6056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 - T \)
23 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 5 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20802939572624, −13.67003949764397, −13.13387009240808, −12.59352528290151, −12.28252588445129, −11.66712354688956, −11.03414230916866, −10.78343562800785, −10.08770144108048, −9.765514031101350, −9.405620752412463, −8.677608175926759, −8.048909864647366, −7.750166977044103, −7.012013193862558, −6.457596520300363, −6.162356107306313, −5.452056615953185, −4.986730045983116, −4.303065143829011, −3.577585466708620, −2.701334084647574, −2.415956289644347, −1.472095977663463, −0.8064877912286052, 0, 0.8064877912286052, 1.472095977663463, 2.415956289644347, 2.701334084647574, 3.577585466708620, 4.303065143829011, 4.986730045983116, 5.452056615953185, 6.162356107306313, 6.457596520300363, 7.012013193862558, 7.750166977044103, 8.048909864647366, 8.677608175926759, 9.405620752412463, 9.765514031101350, 10.08770144108048, 10.78343562800785, 11.03414230916866, 11.66712354688956, 12.28252588445129, 12.59352528290151, 13.13387009240808, 13.67003949764397, 14.20802939572624

Graph of the $Z$-function along the critical line