L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s − 2·11-s − 12-s − 13-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s + 20-s + 21-s + 2·22-s − 23-s + 24-s + 25-s + 26-s − 27-s − 28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.218·21-s + 0.426·22-s − 0.208·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 - T \) |
| 23 | \( 1 + T \) |
good | 11 | \( 1 + 2 T + p T^{2} \) |
| 13 | \( 1 + T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 29 | \( 1 - 3 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - 7 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 5 T + p T^{2} \) |
| 79 | \( 1 - 5 T + p T^{2} \) |
| 83 | \( 1 - 6 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.20802939572624, −13.67003949764397, −13.13387009240808, −12.59352528290151, −12.28252588445129, −11.66712354688956, −11.03414230916866, −10.78343562800785, −10.08770144108048, −9.765514031101350, −9.405620752412463, −8.677608175926759, −8.048909864647366, −7.750166977044103, −7.012013193862558, −6.457596520300363, −6.162356107306313, −5.452056615953185, −4.986730045983116, −4.303065143829011, −3.577585466708620, −2.701334084647574, −2.415956289644347, −1.472095977663463, −0.8064877912286052, 0,
0.8064877912286052, 1.472095977663463, 2.415956289644347, 2.701334084647574, 3.577585466708620, 4.303065143829011, 4.986730045983116, 5.452056615953185, 6.162356107306313, 6.457596520300363, 7.012013193862558, 7.750166977044103, 8.048909864647366, 8.677608175926759, 9.405620752412463, 9.765514031101350, 10.08770144108048, 10.78343562800785, 11.03414230916866, 11.66712354688956, 12.28252588445129, 12.59352528290151, 13.13387009240808, 13.67003949764397, 14.20802939572624