Properties

Label 2-82110-1.1-c1-0-34
Degree $2$
Conductor $82110$
Sign $-1$
Analytic cond. $655.651$
Root an. cond. $25.6056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s + 3·11-s − 12-s + 2·13-s + 14-s − 15-s + 16-s − 17-s − 18-s − 19-s + 20-s + 21-s − 3·22-s + 23-s + 24-s + 25-s − 2·26-s − 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.904·11-s − 0.288·12-s + 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.218·21-s − 0.639·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23\)
Sign: $-1$
Analytic conductor: \(655.651\)
Root analytic conductor: \(25.6056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
23 \( 1 - T \)
good11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 9 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 + 9 T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 - 11 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 11 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12541673227984, −13.55140515087466, −13.40790657420857, −12.51275149014399, −12.13462247880189, −11.76260861766436, −11.09387419566167, −10.71805320410787, −10.23505736242731, −9.604743967038337, −9.367395497522360, −8.664796981538845, −8.310970267610410, −7.558799504237692, −6.999005054144196, −6.371385483175066, −6.224391332487146, −5.650076650914217, −4.792135563481625, −4.290814165137145, −3.638160182130162, −2.807128574356339, −2.323396680980555, −1.263092767697954, −1.057469327412862, 0, 1.057469327412862, 1.263092767697954, 2.323396680980555, 2.807128574356339, 3.638160182130162, 4.290814165137145, 4.792135563481625, 5.650076650914217, 6.224391332487146, 6.371385483175066, 6.999005054144196, 7.558799504237692, 8.310970267610410, 8.664796981538845, 9.367395497522360, 9.604743967038337, 10.23505736242731, 10.71805320410787, 11.09387419566167, 11.76260861766436, 12.13462247880189, 12.51275149014399, 13.40790657420857, 13.55140515087466, 14.12541673227984

Graph of the $Z$-function along the critical line