Properties

Label 2-82110-1.1-c1-0-51
Degree $2$
Conductor $82110$
Sign $1$
Analytic cond. $655.651$
Root an. cond. $25.6056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s − 6·11-s + 12-s − 4·13-s − 14-s + 15-s + 16-s − 17-s − 18-s − 4·19-s + 20-s + 21-s + 6·22-s − 23-s − 24-s + 25-s + 4·26-s + 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.80·11-s + 0.288·12-s − 1.10·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.917·19-s + 0.223·20-s + 0.218·21-s + 1.27·22-s − 0.208·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23\)
Sign: $1$
Analytic conductor: \(655.651\)
Root analytic conductor: \(25.6056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 82110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 + T \)
23 \( 1 + T \)
good11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78844437531077, −13.89008958876934, −13.44332517720600, −13.00667223176805, −12.52539764533131, −12.08210825574281, −11.26532070112769, −10.74722534290345, −10.48960480943400, −9.956664215173367, −9.374525705072295, −8.991689130419675, −8.410541121729538, −7.842680761400633, −7.456657927453526, −7.144755999421428, −6.269149202595982, −5.668203716424800, −5.169694767761840, −4.608288234659486, −3.892970429262524, −2.938586461622653, −2.652532499514128, −1.899979904608380, −1.599222173373442, 0, 0, 1.599222173373442, 1.899979904608380, 2.652532499514128, 2.938586461622653, 3.892970429262524, 4.608288234659486, 5.169694767761840, 5.668203716424800, 6.269149202595982, 7.144755999421428, 7.456657927453526, 7.842680761400633, 8.410541121729538, 8.991689130419675, 9.374525705072295, 9.956664215173367, 10.48960480943400, 10.74722534290345, 11.26532070112769, 12.08210825574281, 12.52539764533131, 13.00667223176805, 13.44332517720600, 13.89008958876934, 14.78844437531077

Graph of the $Z$-function along the critical line