Properties

Label 2-825-1.1-c1-0-15
Degree $2$
Conductor $825$
Sign $1$
Analytic cond. $6.58765$
Root an. cond. $2.56664$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.36·2-s + 3-s − 0.141·4-s + 1.36·6-s + 2.50·7-s − 2.91·8-s + 9-s + 11-s − 0.141·12-s + 1.14·13-s + 3.41·14-s − 3.69·16-s + 7.64·17-s + 1.36·18-s + 1.77·19-s + 2.50·21-s + 1.36·22-s + 1.41·23-s − 2.91·24-s + 1.55·26-s + 27-s − 0.353·28-s − 0.726·29-s + 2.85·31-s + 0.797·32-s + 33-s + 10.4·34-s + ⋯
L(s)  = 1  + 0.964·2-s + 0.577·3-s − 0.0706·4-s + 0.556·6-s + 0.946·7-s − 1.03·8-s + 0.333·9-s + 0.301·11-s − 0.0408·12-s + 0.316·13-s + 0.912·14-s − 0.924·16-s + 1.85·17-s + 0.321·18-s + 0.407·19-s + 0.546·21-s + 0.290·22-s + 0.294·23-s − 0.595·24-s + 0.305·26-s + 0.192·27-s − 0.0668·28-s − 0.134·29-s + 0.513·31-s + 0.141·32-s + 0.174·33-s + 1.78·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(6.58765\)
Root analytic conductor: \(2.56664\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.050368487\)
\(L(\frac12)\) \(\approx\) \(3.050368487\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
good2 \( 1 - 1.36T + 2T^{2} \)
7 \( 1 - 2.50T + 7T^{2} \)
13 \( 1 - 1.14T + 13T^{2} \)
17 \( 1 - 7.64T + 17T^{2} \)
19 \( 1 - 1.77T + 19T^{2} \)
23 \( 1 - 1.41T + 23T^{2} \)
29 \( 1 + 0.726T + 29T^{2} \)
31 \( 1 - 2.85T + 31T^{2} \)
37 \( 1 + 8.42T + 37T^{2} \)
41 \( 1 - 0.636T + 41T^{2} \)
43 \( 1 + 12.6T + 43T^{2} \)
47 \( 1 - 6.14T + 47T^{2} \)
53 \( 1 + 12.0T + 53T^{2} \)
59 \( 1 + 3.41T + 59T^{2} \)
61 \( 1 - 4.59T + 61T^{2} \)
67 \( 1 + 9.32T + 67T^{2} \)
71 \( 1 - 5.85T + 71T^{2} \)
73 \( 1 - 7.55T + 73T^{2} \)
79 \( 1 - 6.91T + 79T^{2} \)
83 \( 1 + 6.17T + 83T^{2} \)
89 \( 1 - 3.45T + 89T^{2} \)
97 \( 1 + 19.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15374733122215738704046531845, −9.348649416063764158760393437178, −8.430644717312248673885648608673, −7.79553841138608589125578986841, −6.63666534237307394030041054888, −5.48954106279152338801918672356, −4.87809759700423328069375888932, −3.77371419785787475240012480777, −3.04866917193860400925149613291, −1.45428727031405064443889610082, 1.45428727031405064443889610082, 3.04866917193860400925149613291, 3.77371419785787475240012480777, 4.87809759700423328069375888932, 5.48954106279152338801918672356, 6.63666534237307394030041054888, 7.79553841138608589125578986841, 8.430644717312248673885648608673, 9.348649416063764158760393437178, 10.15374733122215738704046531845

Graph of the $Z$-function along the critical line