L(s) = 1 | + 1.36·2-s + 3-s − 0.141·4-s + 1.36·6-s + 2.50·7-s − 2.91·8-s + 9-s + 11-s − 0.141·12-s + 1.14·13-s + 3.41·14-s − 3.69·16-s + 7.64·17-s + 1.36·18-s + 1.77·19-s + 2.50·21-s + 1.36·22-s + 1.41·23-s − 2.91·24-s + 1.55·26-s + 27-s − 0.353·28-s − 0.726·29-s + 2.85·31-s + 0.797·32-s + 33-s + 10.4·34-s + ⋯ |
L(s) = 1 | + 0.964·2-s + 0.577·3-s − 0.0706·4-s + 0.556·6-s + 0.946·7-s − 1.03·8-s + 0.333·9-s + 0.301·11-s − 0.0408·12-s + 0.316·13-s + 0.912·14-s − 0.924·16-s + 1.85·17-s + 0.321·18-s + 0.407·19-s + 0.546·21-s + 0.290·22-s + 0.294·23-s − 0.595·24-s + 0.305·26-s + 0.192·27-s − 0.0668·28-s − 0.134·29-s + 0.513·31-s + 0.141·32-s + 0.174·33-s + 1.78·34-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.050368487 |
L(21) |
≈ |
3.050368487 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 11 | 1−T |
good | 2 | 1−1.36T+2T2 |
| 7 | 1−2.50T+7T2 |
| 13 | 1−1.14T+13T2 |
| 17 | 1−7.64T+17T2 |
| 19 | 1−1.77T+19T2 |
| 23 | 1−1.41T+23T2 |
| 29 | 1+0.726T+29T2 |
| 31 | 1−2.85T+31T2 |
| 37 | 1+8.42T+37T2 |
| 41 | 1−0.636T+41T2 |
| 43 | 1+12.6T+43T2 |
| 47 | 1−6.14T+47T2 |
| 53 | 1+12.0T+53T2 |
| 59 | 1+3.41T+59T2 |
| 61 | 1−4.59T+61T2 |
| 67 | 1+9.32T+67T2 |
| 71 | 1−5.85T+71T2 |
| 73 | 1−7.55T+73T2 |
| 79 | 1−6.91T+79T2 |
| 83 | 1+6.17T+83T2 |
| 89 | 1−3.45T+89T2 |
| 97 | 1+19.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15374733122215738704046531845, −9.348649416063764158760393437178, −8.430644717312248673885648608673, −7.79553841138608589125578986841, −6.63666534237307394030041054888, −5.48954106279152338801918672356, −4.87809759700423328069375888932, −3.77371419785787475240012480777, −3.04866917193860400925149613291, −1.45428727031405064443889610082,
1.45428727031405064443889610082, 3.04866917193860400925149613291, 3.77371419785787475240012480777, 4.87809759700423328069375888932, 5.48954106279152338801918672356, 6.63666534237307394030041054888, 7.79553841138608589125578986841, 8.430644717312248673885648608673, 9.348649416063764158760393437178, 10.15374733122215738704046531845