Properties

Label 2-825-1.1-c3-0-42
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $48.6765$
Root an. cond. $6.97686$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s − 7·4-s + 3·6-s − 36·7-s + 15·8-s + 9·9-s + 11·11-s + 21·12-s − 2·13-s + 36·14-s + 41·16-s − 66·17-s − 9·18-s + 140·19-s + 108·21-s − 11·22-s + 68·23-s − 45·24-s + 2·26-s − 27·27-s + 252·28-s + 150·29-s − 128·31-s − 161·32-s − 33·33-s + 66·34-s + ⋯
L(s)  = 1  − 0.353·2-s − 0.577·3-s − 7/8·4-s + 0.204·6-s − 1.94·7-s + 0.662·8-s + 1/3·9-s + 0.301·11-s + 0.505·12-s − 0.0426·13-s + 0.687·14-s + 0.640·16-s − 0.941·17-s − 0.117·18-s + 1.69·19-s + 1.12·21-s − 0.106·22-s + 0.616·23-s − 0.382·24-s + 0.0150·26-s − 0.192·27-s + 1.70·28-s + 0.960·29-s − 0.741·31-s − 0.889·32-s − 0.174·33-s + 0.332·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(48.6765\)
Root analytic conductor: \(6.97686\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 \)
11 \( 1 - p T \)
good2 \( 1 + T + p^{3} T^{2} \)
7 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 + 2 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 - 140 T + p^{3} T^{2} \)
23 \( 1 - 68 T + p^{3} T^{2} \)
29 \( 1 - 150 T + p^{3} T^{2} \)
31 \( 1 + 128 T + p^{3} T^{2} \)
37 \( 1 - 314 T + p^{3} T^{2} \)
41 \( 1 + 118 T + p^{3} T^{2} \)
43 \( 1 + 4 p T + p^{3} T^{2} \)
47 \( 1 - 324 T + p^{3} T^{2} \)
53 \( 1 + 82 T + p^{3} T^{2} \)
59 \( 1 + 740 T + p^{3} T^{2} \)
61 \( 1 - 2 p T + p^{3} T^{2} \)
67 \( 1 - 124 T + p^{3} T^{2} \)
71 \( 1 + 988 T + p^{3} T^{2} \)
73 \( 1 + 2 T + p^{3} T^{2} \)
79 \( 1 - 1100 T + p^{3} T^{2} \)
83 \( 1 - 868 T + p^{3} T^{2} \)
89 \( 1 + 470 T + p^{3} T^{2} \)
97 \( 1 + 1186 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.420939910550260855737171750095, −8.951775830981159239088584618965, −7.60883185051347564951658221118, −6.77188944019531345156763487308, −5.96764016112076086723829471674, −4.96422622703958747464573790397, −3.89585764858646310557682423135, −2.95260744985414853091495640129, −0.989585998782977495469420025380, 0, 0.989585998782977495469420025380, 2.95260744985414853091495640129, 3.89585764858646310557682423135, 4.96422622703958747464573790397, 5.96764016112076086723829471674, 6.77188944019531345156763487308, 7.60883185051347564951658221118, 8.951775830981159239088584618965, 9.420939910550260855737171750095

Graph of the $Z$-function along the critical line