L(s) = 1 | − 9.20·2-s − 9·3-s + 52.7·4-s + 82.8·6-s + 97.7·7-s − 191.·8-s + 81·9-s + 121·11-s − 474.·12-s + 490.·13-s − 900.·14-s + 72.4·16-s + 881.·17-s − 745.·18-s + 34.4·19-s − 880.·21-s − 1.11e3·22-s + 2.90e3·23-s + 1.72e3·24-s − 4.51e3·26-s − 729·27-s + 5.16e3·28-s − 1.41e3·29-s − 2.53e3·31-s + 5.45e3·32-s − 1.08e3·33-s − 8.11e3·34-s + ⋯ |
L(s) = 1 | − 1.62·2-s − 0.577·3-s + 1.64·4-s + 0.939·6-s + 0.754·7-s − 1.05·8-s + 0.333·9-s + 0.301·11-s − 0.952·12-s + 0.804·13-s − 1.22·14-s + 0.0707·16-s + 0.739·17-s − 0.542·18-s + 0.0218·19-s − 0.435·21-s − 0.490·22-s + 1.14·23-s + 0.610·24-s − 1.30·26-s − 0.192·27-s + 1.24·28-s − 0.311·29-s − 0.473·31-s + 0.941·32-s − 0.174·33-s − 1.20·34-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(825s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+9T |
| 5 | 1 |
| 11 | 1−121T |
good | 2 | 1+9.20T+32T2 |
| 7 | 1−97.7T+1.68e4T2 |
| 13 | 1−490.T+3.71e5T2 |
| 17 | 1−881.T+1.41e6T2 |
| 19 | 1−34.4T+2.47e6T2 |
| 23 | 1−2.90e3T+6.43e6T2 |
| 29 | 1+1.41e3T+2.05e7T2 |
| 31 | 1+2.53e3T+2.86e7T2 |
| 37 | 1+6.26e3T+6.93e7T2 |
| 41 | 1+1.82e4T+1.15e8T2 |
| 43 | 1+1.41e4T+1.47e8T2 |
| 47 | 1−7.81e3T+2.29e8T2 |
| 53 | 1−4.61e3T+4.18e8T2 |
| 59 | 1+1.12e3T+7.14e8T2 |
| 61 | 1+672.T+8.44e8T2 |
| 67 | 1+2.92e4T+1.35e9T2 |
| 71 | 1+9.69e3T+1.80e9T2 |
| 73 | 1+4.03e4T+2.07e9T2 |
| 79 | 1+7.28e4T+3.07e9T2 |
| 83 | 1+1.00e5T+3.93e9T2 |
| 89 | 1+3.06e4T+5.58e9T2 |
| 97 | 1−3.44e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.904299417702351705426714776014, −8.434837339507127217452725639631, −7.44639189706763761985447757552, −6.81383279401287945133259772838, −5.73802724679002358051712229407, −4.71818951313862725266404429035, −3.30979683040344202718298161985, −1.72860520334587632271734111317, −1.16413082909222054865008910520, 0,
1.16413082909222054865008910520, 1.72860520334587632271734111317, 3.30979683040344202718298161985, 4.71818951313862725266404429035, 5.73802724679002358051712229407, 6.81383279401287945133259772838, 7.44639189706763761985447757552, 8.434837339507127217452725639631, 8.904299417702351705426714776014