L(s) = 1 | − 6.55·2-s + 9·3-s + 11.0·4-s − 59.0·6-s − 146.·7-s + 137.·8-s + 81·9-s − 121·11-s + 99.1·12-s − 170.·13-s + 960.·14-s − 1.25e3·16-s − 1.56e3·17-s − 531.·18-s + 569.·19-s − 1.31e3·21-s + 793.·22-s − 3.15e3·23-s + 1.23e3·24-s + 1.11e3·26-s + 729·27-s − 1.61e3·28-s + 3.98e3·29-s + 2.99e3·31-s + 3.82e3·32-s − 1.08e3·33-s + 1.02e4·34-s + ⋯ |
L(s) = 1 | − 1.15·2-s + 0.577·3-s + 0.344·4-s − 0.669·6-s − 1.12·7-s + 0.760·8-s + 0.333·9-s − 0.301·11-s + 0.198·12-s − 0.279·13-s + 1.31·14-s − 1.22·16-s − 1.31·17-s − 0.386·18-s + 0.362·19-s − 0.652·21-s + 0.349·22-s − 1.24·23-s + 0.438·24-s + 0.323·26-s + 0.192·27-s − 0.389·28-s + 0.879·29-s + 0.558·31-s + 0.661·32-s − 0.174·33-s + 1.52·34-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(825s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.5010688061 |
L(21) |
≈ |
0.5010688061 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9T |
| 5 | 1 |
| 11 | 1+121T |
good | 2 | 1+6.55T+32T2 |
| 7 | 1+146.T+1.68e4T2 |
| 13 | 1+170.T+3.71e5T2 |
| 17 | 1+1.56e3T+1.41e6T2 |
| 19 | 1−569.T+2.47e6T2 |
| 23 | 1+3.15e3T+6.43e6T2 |
| 29 | 1−3.98e3T+2.05e7T2 |
| 31 | 1−2.99e3T+2.86e7T2 |
| 37 | 1+7.85e3T+6.93e7T2 |
| 41 | 1+5.20e3T+1.15e8T2 |
| 43 | 1+1.38e4T+1.47e8T2 |
| 47 | 1+6.85e3T+2.29e8T2 |
| 53 | 1−3.83e3T+4.18e8T2 |
| 59 | 1−9.64e3T+7.14e8T2 |
| 61 | 1+2.11e4T+8.44e8T2 |
| 67 | 1−4.34e4T+1.35e9T2 |
| 71 | 1+5.26e4T+1.80e9T2 |
| 73 | 1−6.43e4T+2.07e9T2 |
| 79 | 1−2.89e4T+3.07e9T2 |
| 83 | 1−4.64e3T+3.93e9T2 |
| 89 | 1+1.03e5T+5.58e9T2 |
| 97 | 1+7.58e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.542745238201600010050308100414, −8.626471160625154004603973785007, −8.102718313577529306531088851740, −7.04229408658193004512435942869, −6.43393259516918565755940309837, −4.95152447542382480304315965095, −3.90476392203606472018964619067, −2.75814671586818336309329274646, −1.75103608849350461757826734523, −0.36346721324190111573002025139,
0.36346721324190111573002025139, 1.75103608849350461757826734523, 2.75814671586818336309329274646, 3.90476392203606472018964619067, 4.95152447542382480304315965095, 6.43393259516918565755940309837, 7.04229408658193004512435942869, 8.102718313577529306531088851740, 8.626471160625154004603973785007, 9.542745238201600010050308100414