L(s) = 1 | − 10.4·2-s + 9·3-s + 77.9·4-s − 94.3·6-s + 152.·7-s − 481.·8-s + 81·9-s + 121·11-s + 701.·12-s + 260.·13-s − 1.60e3·14-s + 2.55e3·16-s − 586.·17-s − 849.·18-s − 614.·19-s + 1.37e3·21-s − 1.26e3·22-s + 1.37e3·23-s − 4.33e3·24-s − 2.72e3·26-s + 729·27-s + 1.19e4·28-s − 4.06e3·29-s − 2.68e3·31-s − 1.13e4·32-s + 1.08e3·33-s + 6.15e3·34-s + ⋯ |
L(s) = 1 | − 1.85·2-s + 0.577·3-s + 2.43·4-s − 1.07·6-s + 1.17·7-s − 2.66·8-s + 0.333·9-s + 0.301·11-s + 1.40·12-s + 0.426·13-s − 2.18·14-s + 2.49·16-s − 0.492·17-s − 0.617·18-s − 0.390·19-s + 0.681·21-s − 0.558·22-s + 0.542·23-s − 1.53·24-s − 0.791·26-s + 0.192·27-s + 2.87·28-s − 0.896·29-s − 0.502·31-s − 1.96·32-s + 0.174·33-s + 0.912·34-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(825s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9T |
| 5 | 1 |
| 11 | 1−121T |
good | 2 | 1+10.4T+32T2 |
| 7 | 1−152.T+1.68e4T2 |
| 13 | 1−260.T+3.71e5T2 |
| 17 | 1+586.T+1.41e6T2 |
| 19 | 1+614.T+2.47e6T2 |
| 23 | 1−1.37e3T+6.43e6T2 |
| 29 | 1+4.06e3T+2.05e7T2 |
| 31 | 1+2.68e3T+2.86e7T2 |
| 37 | 1+5.30e3T+6.93e7T2 |
| 41 | 1+3.30e3T+1.15e8T2 |
| 43 | 1−1.95e4T+1.47e8T2 |
| 47 | 1+1.54e4T+2.29e8T2 |
| 53 | 1+1.73e4T+4.18e8T2 |
| 59 | 1+5.15e4T+7.14e8T2 |
| 61 | 1+3.00e4T+8.44e8T2 |
| 67 | 1−3.35e4T+1.35e9T2 |
| 71 | 1+7.41e4T+1.80e9T2 |
| 73 | 1+3.94e4T+2.07e9T2 |
| 79 | 1+2.63e4T+3.07e9T2 |
| 83 | 1+5.54e4T+3.93e9T2 |
| 89 | 1+1.19e4T+5.58e9T2 |
| 97 | 1+1.23e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.970779690624769721229100637775, −8.370260135548802570355111721126, −7.65671564902208825555995612861, −6.96600054434470613955627628373, −5.89364318032810331877057677762, −4.46308109862332177505595571408, −3.06080289600461421282673557320, −1.87827805639411217032559007564, −1.36082101776373264380946692242, 0,
1.36082101776373264380946692242, 1.87827805639411217032559007564, 3.06080289600461421282673557320, 4.46308109862332177505595571408, 5.89364318032810331877057677762, 6.96600054434470613955627628373, 7.65671564902208825555995612861, 8.370260135548802570355111721126, 8.970779690624769721229100637775