Properties

Label 2-825-1.1-c5-0-69
Degree 22
Conductor 825825
Sign 11
Analytic cond. 132.316132.316
Root an. cond. 11.502811.5028
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.08·2-s + 9·3-s − 30.8·4-s − 9.73·6-s + 139.·7-s + 67.9·8-s + 81·9-s − 121·11-s − 277.·12-s + 646.·13-s − 150.·14-s + 913.·16-s + 1.37e3·17-s − 87.5·18-s + 1.90e3·19-s + 1.25e3·21-s + 130.·22-s − 343.·23-s + 611.·24-s − 698.·26-s + 729·27-s − 4.30e3·28-s + 53.5·29-s + 634.·31-s − 3.16e3·32-s − 1.08e3·33-s − 1.49e3·34-s + ⋯
L(s)  = 1  − 0.191·2-s + 0.577·3-s − 0.963·4-s − 0.110·6-s + 1.07·7-s + 0.375·8-s + 0.333·9-s − 0.301·11-s − 0.556·12-s + 1.06·13-s − 0.205·14-s + 0.891·16-s + 1.15·17-s − 0.0637·18-s + 1.21·19-s + 0.621·21-s + 0.0576·22-s − 0.135·23-s + 0.216·24-s − 0.202·26-s + 0.192·27-s − 1.03·28-s + 0.0118·29-s + 0.118·31-s − 0.545·32-s − 0.174·33-s − 0.221·34-s + ⋯

Functional equation

Λ(s)=(825s/2ΓC(s)L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(825s/2ΓC(s+5/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 825825    =    352113 \cdot 5^{2} \cdot 11
Sign: 11
Analytic conductor: 132.316132.316
Root analytic conductor: 11.502811.5028
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 825, ( :5/2), 1)(2,\ 825,\ (\ :5/2),\ 1)

Particular Values

L(3)L(3) \approx 2.7815407472.781540747
L(12)L(\frac12) \approx 2.7815407472.781540747
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 19T 1 - 9T
5 1 1
11 1+121T 1 + 121T
good2 1+1.08T+32T2 1 + 1.08T + 32T^{2}
7 1139.T+1.68e4T2 1 - 139.T + 1.68e4T^{2}
13 1646.T+3.71e5T2 1 - 646.T + 3.71e5T^{2}
17 11.37e3T+1.41e6T2 1 - 1.37e3T + 1.41e6T^{2}
19 11.90e3T+2.47e6T2 1 - 1.90e3T + 2.47e6T^{2}
23 1+343.T+6.43e6T2 1 + 343.T + 6.43e6T^{2}
29 153.5T+2.05e7T2 1 - 53.5T + 2.05e7T^{2}
31 1634.T+2.86e7T2 1 - 634.T + 2.86e7T^{2}
37 1+1.16e4T+6.93e7T2 1 + 1.16e4T + 6.93e7T^{2}
41 11.88e4T+1.15e8T2 1 - 1.88e4T + 1.15e8T^{2}
43 1+1.33e4T+1.47e8T2 1 + 1.33e4T + 1.47e8T^{2}
47 12.25e3T+2.29e8T2 1 - 2.25e3T + 2.29e8T^{2}
53 18.90e3T+4.18e8T2 1 - 8.90e3T + 4.18e8T^{2}
59 1+1.12e4T+7.14e8T2 1 + 1.12e4T + 7.14e8T^{2}
61 11.18e4T+8.44e8T2 1 - 1.18e4T + 8.44e8T^{2}
67 15.73e4T+1.35e9T2 1 - 5.73e4T + 1.35e9T^{2}
71 13.10e4T+1.80e9T2 1 - 3.10e4T + 1.80e9T^{2}
73 1+5.60e4T+2.07e9T2 1 + 5.60e4T + 2.07e9T^{2}
79 1+883.T+3.07e9T2 1 + 883.T + 3.07e9T^{2}
83 1+9.39e4T+3.93e9T2 1 + 9.39e4T + 3.93e9T^{2}
89 12.17e4T+5.58e9T2 1 - 2.17e4T + 5.58e9T^{2}
97 11.58e5T+8.58e9T2 1 - 1.58e5T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.404342941132456143639012171175, −8.482215120775309968013891966663, −8.057116307075131438285682697028, −7.25510354805086355741050604983, −5.70828310327807472909894539110, −5.03701218988820549792891851670, −3.99961804413794600935408905284, −3.16457992086396753472234850663, −1.62034891384160577330339635658, −0.843343357606116739670221804741, 0.843343357606116739670221804741, 1.62034891384160577330339635658, 3.16457992086396753472234850663, 3.99961804413794600935408905284, 5.03701218988820549792891851670, 5.70828310327807472909894539110, 7.25510354805086355741050604983, 8.057116307075131438285682697028, 8.482215120775309968013891966663, 9.404342941132456143639012171175

Graph of the ZZ-function along the critical line