L(s) = 1 | + (0.809 − 0.587i)3-s + (0.587 − 0.809i)4-s + i·5-s + (0.309 − 0.951i)9-s + (−0.951 − 0.309i)11-s − i·12-s + (0.587 + 0.809i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)20-s + (0.896 + 1.76i)23-s − 25-s + (−0.309 − 0.951i)27-s + (−1.53 + 1.11i)31-s + (−0.951 + 0.309i)33-s + (−0.587 − 0.809i)36-s + (1.26 + 0.642i)37-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + (0.587 − 0.809i)4-s + i·5-s + (0.309 − 0.951i)9-s + (−0.951 − 0.309i)11-s − i·12-s + (0.587 + 0.809i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)20-s + (0.896 + 1.76i)23-s − 25-s + (−0.309 − 0.951i)27-s + (−1.53 + 1.11i)31-s + (−0.951 + 0.309i)33-s + (−0.587 − 0.809i)36-s + (1.26 + 0.642i)37-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(0.770+0.637i)Λ(1−s)
Λ(s)=(=(825s/2ΓC(s)L(s)(0.770+0.637i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
0.770+0.637i
|
Analytic conductor: |
0.411728 |
Root analytic conductor: |
0.641660 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(428,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :0), 0.770+0.637i)
|
Particular Values
L(21) |
≈ |
1.359645236 |
L(21) |
≈ |
1.359645236 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.809+0.587i)T |
| 5 | 1−iT |
| 11 | 1+(0.951+0.309i)T |
good | 2 | 1+(−0.587+0.809i)T2 |
| 7 | 1+iT2 |
| 13 | 1+(0.587+0.809i)T2 |
| 17 | 1+(−0.951−0.309i)T2 |
| 19 | 1+(0.309−0.951i)T2 |
| 23 | 1+(−0.896−1.76i)T+(−0.587+0.809i)T2 |
| 29 | 1+(−0.309−0.951i)T2 |
| 31 | 1+(1.53−1.11i)T+(0.309−0.951i)T2 |
| 37 | 1+(−1.26−0.642i)T+(0.587+0.809i)T2 |
| 41 | 1+(−0.809+0.587i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(0.221+1.39i)T+(−0.951+0.309i)T2 |
| 53 | 1+(0.896−0.142i)T+(0.951−0.309i)T2 |
| 59 | 1+(0.190+0.587i)T+(−0.809+0.587i)T2 |
| 61 | 1+(0.809+0.587i)T2 |
| 67 | 1+(0.309−1.95i)T+(−0.951−0.309i)T2 |
| 71 | 1+(1.11−1.53i)T+(−0.309−0.951i)T2 |
| 73 | 1+(−0.587+0.809i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(0.951+0.309i)T2 |
| 89 | 1+(−0.363+1.11i)T+(−0.809−0.587i)T2 |
| 97 | 1+(−1.76+0.278i)T+(0.951−0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26657988353649189004308478354, −9.644422959695691692352409329735, −8.606296174842911274105140839167, −7.43491212514371568072953418577, −7.14556894341914639129894191381, −6.10899466827752039359948944292, −5.25823698345561762098616928990, −3.48853972864093085692149660726, −2.72543769005277565590877891230, −1.63580873263475397377844462174,
2.08687701078055480369417199867, 3.00385941876144152960033456260, 4.21251451940156494364097363107, 4.87614385524366768937533175071, 6.15446634983255904172094144116, 7.63600956806679753812114580051, 7.84029106228471811457179564866, 8.899058665908273714747207400993, 9.397341573134603665171294555925, 10.60668951350543692884817317498