L(s) = 1 | + (0.809 − 0.587i)3-s + (0.587 − 0.809i)4-s + i·5-s + (0.309 − 0.951i)9-s + (−0.951 − 0.309i)11-s − i·12-s + (0.587 + 0.809i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)20-s + (0.896 + 1.76i)23-s − 25-s + (−0.309 − 0.951i)27-s + (−1.53 + 1.11i)31-s + (−0.951 + 0.309i)33-s + (−0.587 − 0.809i)36-s + (1.26 + 0.642i)37-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + (0.587 − 0.809i)4-s + i·5-s + (0.309 − 0.951i)9-s + (−0.951 − 0.309i)11-s − i·12-s + (0.587 + 0.809i)15-s + (−0.309 − 0.951i)16-s + (0.809 + 0.587i)20-s + (0.896 + 1.76i)23-s − 25-s + (−0.309 − 0.951i)27-s + (−1.53 + 1.11i)31-s + (−0.951 + 0.309i)33-s + (−0.587 − 0.809i)36-s + (1.26 + 0.642i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 + 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 + 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.359645236\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.359645236\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 - iT \) |
| 11 | \( 1 + (0.951 + 0.309i)T \) |
good | 2 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 13 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.896 - 1.76i)T + (-0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-1.26 - 0.642i)T + (0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.221 + 1.39i)T + (-0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (0.896 - 0.142i)T + (0.951 - 0.309i)T^{2} \) |
| 59 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.309 - 1.95i)T + (-0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (1.11 - 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-1.76 + 0.278i)T + (0.951 - 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26657988353649189004308478354, −9.644422959695691692352409329735, −8.606296174842911274105140839167, −7.43491212514371568072953418577, −7.14556894341914639129894191381, −6.10899466827752039359948944292, −5.25823698345561762098616928990, −3.48853972864093085692149660726, −2.72543769005277565590877891230, −1.63580873263475397377844462174,
2.08687701078055480369417199867, 3.00385941876144152960033456260, 4.21251451940156494364097363107, 4.87614385524366768937533175071, 6.15446634983255904172094144116, 7.63600956806679753812114580051, 7.84029106228471811457179564866, 8.899058665908273714747207400993, 9.397341573134603665171294555925, 10.60668951350543692884817317498