L(s) = 1 | + (−0.309 − 0.951i)3-s + (−0.951 − 0.309i)4-s − i·5-s + (−0.809 + 0.587i)9-s + (−0.587 − 0.809i)11-s + 0.999i·12-s + (−0.951 + 0.309i)15-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)20-s + (−1.76 − 0.278i)23-s − 25-s + (0.809 + 0.587i)27-s + (0.363 + 1.11i)31-s + (−0.587 + 0.809i)33-s + (0.951 − 0.309i)36-s + (−0.221 − 1.39i)37-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)3-s + (−0.951 − 0.309i)4-s − i·5-s + (−0.809 + 0.587i)9-s + (−0.587 − 0.809i)11-s + 0.999i·12-s + (−0.951 + 0.309i)15-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)20-s + (−1.76 − 0.278i)23-s − 25-s + (0.809 + 0.587i)27-s + (0.363 + 1.11i)31-s + (−0.587 + 0.809i)33-s + (0.951 − 0.309i)36-s + (−0.221 − 1.39i)37-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.992+0.125i)Λ(1−s)
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.992+0.125i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
−0.992+0.125i
|
Analytic conductor: |
0.411728 |
Root analytic conductor: |
0.641660 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(527,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :0), −0.992+0.125i)
|
Particular Values
L(21) |
≈ |
0.4795175474 |
L(21) |
≈ |
0.4795175474 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309+0.951i)T |
| 5 | 1+iT |
| 11 | 1+(0.587+0.809i)T |
good | 2 | 1+(0.951+0.309i)T2 |
| 7 | 1−iT2 |
| 13 | 1+(−0.951+0.309i)T2 |
| 17 | 1+(−0.587−0.809i)T2 |
| 19 | 1+(−0.809+0.587i)T2 |
| 23 | 1+(1.76+0.278i)T+(0.951+0.309i)T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(−0.363−1.11i)T+(−0.809+0.587i)T2 |
| 37 | 1+(0.221+1.39i)T+(−0.951+0.309i)T2 |
| 41 | 1+(0.309+0.951i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(0.642+1.26i)T+(−0.587+0.809i)T2 |
| 53 | 1+(−1.76+0.896i)T+(0.587−0.809i)T2 |
| 59 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 61 | 1+(−0.309+0.951i)T2 |
| 67 | 1+(−0.809+1.58i)T+(−0.587−0.809i)T2 |
| 71 | 1+(−1.11−0.363i)T+(0.809+0.587i)T2 |
| 73 | 1+(0.951+0.309i)T2 |
| 79 | 1+(−0.809−0.587i)T2 |
| 83 | 1+(0.587+0.809i)T2 |
| 89 | 1+(−1.53+1.11i)T+(0.309−0.951i)T2 |
| 97 | 1+(−0.278+0.142i)T+(0.587−0.809i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.999988787068063262373544815544, −8.940677903769696787391798573652, −8.339165320279189554666847044986, −7.73943879178065716129610778529, −6.32839715444749050715654116857, −5.55822361481768071714962103257, −4.89782099441090008358061899639, −3.66551165908730171829921417021, −1.93953211410501952469502770082, −0.51276616136996274215340704142,
2.58710438200648431660924031663, 3.72749680691850918128272554673, 4.42980121086140964642187040003, 5.44547427814806156324732161567, 6.34207034023721292147924103846, 7.59709474403710844062221017793, 8.298243689854554743561949277097, 9.470342331301778581229371093891, 9.990980069323676639454475340936, 10.52920802422778068465786180664