L(s) = 1 | − 2-s − 3-s − 4-s − 2·5-s + 6-s − 3·7-s + 3·8-s − 2·9-s + 2·10-s + 3·11-s + 12-s − 6·13-s + 3·14-s + 2·15-s − 16-s + 5·17-s + 2·18-s + 2·19-s + 2·20-s + 3·21-s − 3·22-s − 4·23-s − 3·24-s − 25-s + 6·26-s + 5·27-s + 3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.894·5-s + 0.408·6-s − 1.13·7-s + 1.06·8-s − 2/3·9-s + 0.632·10-s + 0.904·11-s + 0.288·12-s − 1.66·13-s + 0.801·14-s + 0.516·15-s − 1/4·16-s + 1.21·17-s + 0.471·18-s + 0.458·19-s + 0.447·20-s + 0.654·21-s − 0.639·22-s − 0.834·23-s − 0.612·24-s − 1/5·25-s + 1.17·26-s + 0.962·27-s + 0.566·28-s + ⋯ |
Λ(s)=(=(83s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(83s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 83 | 1+T |
good | 2 | 1+T+pT2 |
| 3 | 1+T+pT2 |
| 5 | 1+2T+pT2 |
| 7 | 1+3T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−5T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+7T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+11T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−5T+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1+pT2 |
| 79 | 1−14T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.82349410001976328687202362359, −12.30534590659785910801180963406, −11.77890434965261413314394451050, −10.17676635448238491848838037425, −9.457827669916618767543831706200, −8.118927993931557797577222055683, −6.97450299304430271706246705192, −5.31327024180315445602831381888, −3.65475901244453246589839654026, 0,
3.65475901244453246589839654026, 5.31327024180315445602831381888, 6.97450299304430271706246705192, 8.118927993931557797577222055683, 9.457827669916618767543831706200, 10.17676635448238491848838037425, 11.77890434965261413314394451050, 12.30534590659785910801180963406, 13.82349410001976328687202362359