Properties

Label 2-832-1.1-c1-0-3
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $6.64355$
Root an. cond. $2.57750$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s − 3·9-s + 2·11-s + 13-s + 6·17-s + 6·19-s + 8·23-s − 25-s − 2·29-s + 10·31-s + 4·35-s + 6·37-s − 6·41-s − 4·43-s + 6·45-s − 2·47-s − 3·49-s − 6·53-s − 4·55-s + 10·59-s + 2·61-s + 6·63-s − 2·65-s − 10·67-s + 10·71-s + 2·73-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s − 9-s + 0.603·11-s + 0.277·13-s + 1.45·17-s + 1.37·19-s + 1.66·23-s − 1/5·25-s − 0.371·29-s + 1.79·31-s + 0.676·35-s + 0.986·37-s − 0.937·41-s − 0.609·43-s + 0.894·45-s − 0.291·47-s − 3/7·49-s − 0.824·53-s − 0.539·55-s + 1.30·59-s + 0.256·61-s + 0.755·63-s − 0.248·65-s − 1.22·67-s + 1.18·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(6.64355\)
Root analytic conductor: \(2.57750\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.195693820\)
\(L(\frac12)\) \(\approx\) \(1.195693820\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06947661821394918418145315819, −9.420900365687786965896429939417, −8.448574941224861101937906300558, −7.73101944712663475124809392314, −6.78863087763573008439633106061, −5.85741842949549920807230123970, −4.88282077350781318055546355500, −3.47757941400193154474288876226, −3.07083233977996346947903399516, −0.906662202456000794708098813478, 0.906662202456000794708098813478, 3.07083233977996346947903399516, 3.47757941400193154474288876226, 4.88282077350781318055546355500, 5.85741842949549920807230123970, 6.78863087763573008439633106061, 7.73101944712663475124809392314, 8.448574941224861101937906300558, 9.420900365687786965896429939417, 10.06947661821394918418145315819

Graph of the $Z$-function along the critical line