L(s) = 1 | + (−0.866 + 0.5i)3-s + (−3.12 − 1.80i)7-s + (−1 + 1.73i)9-s + (0.866 + 1.5i)11-s + 3.60·13-s + (1.5 − 2.59i)17-s + (0.866 − 1.5i)19-s + 3.60·21-s + (−3.12 − 5.40i)23-s − 5·25-s − 5i·27-s + (5.40 − 3.12i)29-s − 7.21i·31-s + (−1.5 − 0.866i)33-s + (−1.80 − 3.12i)37-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.288i)3-s + (−1.18 − 0.681i)7-s + (−0.333 + 0.577i)9-s + (0.261 + 0.452i)11-s + 1.00·13-s + (0.363 − 0.630i)17-s + (0.198 − 0.344i)19-s + 0.786·21-s + (−0.651 − 1.12i)23-s − 25-s − 0.962i·27-s + (1.00 − 0.579i)29-s − 1.29i·31-s + (−0.261 − 0.150i)33-s + (−0.296 − 0.513i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.246 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.246 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.647408 - 0.503401i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.647408 - 0.503401i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - 3.60T \) |
good | 3 | \( 1 + (0.866 - 0.5i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 7 | \( 1 + (3.12 + 1.80i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 1.5i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 1.5i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.12 + 5.40i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.40 + 3.12i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.21iT - 31T^{2} \) |
| 37 | \( 1 + (1.80 + 3.12i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 12.4iT - 53T^{2} \) |
| 59 | \( 1 + (6.06 - 10.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.40 - 3.12i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.866 + 1.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (9.36 + 5.40i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.46iT - 73T^{2} \) |
| 79 | \( 1 - 12.4T + 79T^{2} \) |
| 83 | \( 1 - 6.92T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 + 4.33i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (10.5 + 6.06i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08184081410043997493743685798, −9.441044472061838420289932047170, −8.319228401403583064302418495719, −7.40463126333700147705892906733, −6.40432132134352495390680595765, −5.79999924713761962098103893153, −4.53795606217992001104377864814, −3.73048678992419198325353371622, −2.43662897409828315085239845378, −0.46437949603690812662274263339,
1.31874673548924120852853098846, 3.11270570997036703328696172643, 3.74543383087958232459972163570, 5.44963780273806398433555201717, 6.14415273924661188905352533206, 6.55451431333082299012183313936, 7.88520031332903512421831957486, 8.828249520190240156909224656180, 9.464698692939950995251815970769, 10.39855848153417982046192255960