L(s) = 1 | + (−0.866 + 0.5i)3-s + (−3.12 − 1.80i)7-s + (−1 + 1.73i)9-s + (0.866 + 1.5i)11-s + 3.60·13-s + (1.5 − 2.59i)17-s + (0.866 − 1.5i)19-s + 3.60·21-s + (−3.12 − 5.40i)23-s − 5·25-s − 5i·27-s + (5.40 − 3.12i)29-s − 7.21i·31-s + (−1.5 − 0.866i)33-s + (−1.80 − 3.12i)37-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.288i)3-s + (−1.18 − 0.681i)7-s + (−0.333 + 0.577i)9-s + (0.261 + 0.452i)11-s + 1.00·13-s + (0.363 − 0.630i)17-s + (0.198 − 0.344i)19-s + 0.786·21-s + (−0.651 − 1.12i)23-s − 25-s − 0.962i·27-s + (1.00 − 0.579i)29-s − 1.29i·31-s + (−0.261 − 0.150i)33-s + (−0.296 − 0.513i)37-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.246+0.969i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.246+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.246+0.969i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.246+0.969i)
|
Particular Values
L(1) |
≈ |
0.647408−0.503401i |
L(21) |
≈ |
0.647408−0.503401i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−3.60T |
good | 3 | 1+(0.866−0.5i)T+(1.5−2.59i)T2 |
| 5 | 1+5T2 |
| 7 | 1+(3.12+1.80i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.866−1.5i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.866+1.5i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.12+5.40i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−5.40+3.12i)T+(14.5−25.1i)T2 |
| 31 | 1+7.21iT−31T2 |
| 37 | 1+(1.80+3.12i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.5+2.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.866−0.5i)T+(21.5+37.2i)T2 |
| 47 | 1−47T2 |
| 53 | 1+12.4iT−53T2 |
| 59 | 1+(6.06−10.5i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.40−3.12i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.866+1.5i)T+(−33.5+58.0i)T2 |
| 71 | 1+(9.36+5.40i)T+(35.5+61.4i)T2 |
| 73 | 1−3.46iT−73T2 |
| 79 | 1−12.4T+79T2 |
| 83 | 1−6.92T+83T2 |
| 89 | 1+(−7.5+4.33i)T+(44.5−77.0i)T2 |
| 97 | 1+(10.5+6.06i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08184081410043997493743685798, −9.441044472061838420289932047170, −8.319228401403583064302418495719, −7.40463126333700147705892906733, −6.40432132134352495390680595765, −5.79999924713761962098103893153, −4.53795606217992001104377864814, −3.73048678992419198325353371622, −2.43662897409828315085239845378, −0.46437949603690812662274263339,
1.31874673548924120852853098846, 3.11270570997036703328696172643, 3.74543383087958232459972163570, 5.44963780273806398433555201717, 6.14415273924661188905352533206, 6.55451431333082299012183313936, 7.88520031332903512421831957486, 8.828249520190240156909224656180, 9.464698692939950995251815970769, 10.39855848153417982046192255960