L(s) = 1 | + (−2.36 + 1.36i)3-s + 1.73·5-s + (−1.73 − i)7-s + (2.23 − 3.86i)9-s + (1.73 + 3i)11-s + (−3.59 − 0.232i)13-s + (−4.09 + 2.36i)15-s + (0.232 − 0.401i)17-s + (−2.36 + 4.09i)19-s + 5.46·21-s + (−2.36 − 4.09i)23-s − 2.00·25-s + 4.00i·27-s + (−0.401 + 0.232i)29-s − 0.196i·31-s + ⋯ |
L(s) = 1 | + (−1.36 + 0.788i)3-s + 0.774·5-s + (−0.654 − 0.377i)7-s + (0.744 − 1.28i)9-s + (0.522 + 0.904i)11-s + (−0.997 − 0.0643i)13-s + (−1.05 + 0.610i)15-s + (0.0562 − 0.0974i)17-s + (−0.542 + 0.940i)19-s + 1.19·21-s + (−0.493 − 0.854i)23-s − 0.400·25-s + 0.769i·27-s + (−0.0746 + 0.0430i)29-s − 0.0352i·31-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(−0.759+0.650i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(−0.759+0.650i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
−0.759+0.650i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 832, ( :1/2), −0.759+0.650i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3.59+0.232i)T |
good | 3 | 1+(2.36−1.36i)T+(1.5−2.59i)T2 |
| 5 | 1−1.73T+5T2 |
| 7 | 1+(1.73+i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.73−3i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.232+0.401i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.36−4.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.36+4.09i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.401−0.232i)T+(14.5−25.1i)T2 |
| 31 | 1+0.196iT−31T2 |
| 37 | 1+(−4.59−7.96i)T+(−18.5+32.0i)T2 |
| 41 | 1+(4.5−2.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(10.7+6.19i)T+(21.5+37.2i)T2 |
| 47 | 1+11.6iT−47T2 |
| 53 | 1+12.4iT−53T2 |
| 59 | 1+(−0.464+0.803i)T+(−29.5−51.0i)T2 |
| 61 | 1+(11.5+6.69i)T+(30.5+52.8i)T2 |
| 67 | 1+(4.09+7.09i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−10.0−5.83i)T+(35.5+61.4i)T2 |
| 73 | 1−5.19iT−73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1+2.53T+83T2 |
| 89 | 1+(13.3−7.73i)T+(44.5−77.0i)T2 |
| 97 | 1+(−5.19−3i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.937320817230877243006730226984, −9.693092048785965799108138466402, −8.238864718995406736665597526339, −6.80090567775694803637690421120, −6.43255493432673088387957864134, −5.37965047500399563365257126725, −4.66932085531096349826805844152, −3.68258941768307417564459961712, −1.95926020103333398719218504371, 0,
1.55127966613772653635832194470, 2.86595080290625693495463666517, 4.52477829635618333634785034522, 5.72123882800760642411037093895, 6.01685940753180579280486418089, 6.83974332914137070798219456170, 7.72408930626670411408262597742, 9.075602396640237623680029351479, 9.700766675820996941323991569886