L(s) = 1 | + (−2.36 + 1.36i)3-s + 1.73·5-s + (−1.73 − i)7-s + (2.23 − 3.86i)9-s + (1.73 + 3i)11-s + (−3.59 − 0.232i)13-s + (−4.09 + 2.36i)15-s + (0.232 − 0.401i)17-s + (−2.36 + 4.09i)19-s + 5.46·21-s + (−2.36 − 4.09i)23-s − 2.00·25-s + 4.00i·27-s + (−0.401 + 0.232i)29-s − 0.196i·31-s + ⋯ |
L(s) = 1 | + (−1.36 + 0.788i)3-s + 0.774·5-s + (−0.654 − 0.377i)7-s + (0.744 − 1.28i)9-s + (0.522 + 0.904i)11-s + (−0.997 − 0.0643i)13-s + (−1.05 + 0.610i)15-s + (0.0562 − 0.0974i)17-s + (−0.542 + 0.940i)19-s + 1.19·21-s + (−0.493 − 0.854i)23-s − 0.400·25-s + 0.769i·27-s + (−0.0746 + 0.0430i)29-s − 0.0352i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.759 + 0.650i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.759 + 0.650i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.59 + 0.232i)T \) |
good | 3 | \( 1 + (2.36 - 1.36i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 1.73T + 5T^{2} \) |
| 7 | \( 1 + (1.73 + i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.73 - 3i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.232 + 0.401i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.36 - 4.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.36 + 4.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.401 - 0.232i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 0.196iT - 31T^{2} \) |
| 37 | \( 1 + (-4.59 - 7.96i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 - 2.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (10.7 + 6.19i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 11.6iT - 47T^{2} \) |
| 53 | \( 1 + 12.4iT - 53T^{2} \) |
| 59 | \( 1 + (-0.464 + 0.803i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (11.5 + 6.69i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.09 + 7.09i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.0 - 5.83i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.19iT - 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 + 2.53T + 83T^{2} \) |
| 89 | \( 1 + (13.3 - 7.73i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.19 - 3i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.937320817230877243006730226984, −9.693092048785965799108138466402, −8.238864718995406736665597526339, −6.80090567775694803637690421120, −6.43255493432673088387957864134, −5.37965047500399563365257126725, −4.66932085531096349826805844152, −3.68258941768307417564459961712, −1.95926020103333398719218504371, 0,
1.55127966613772653635832194470, 2.86595080290625693495463666517, 4.52477829635618333634785034522, 5.72123882800760642411037093895, 6.01685940753180579280486418089, 6.83974332914137070798219456170, 7.72408930626670411408262597742, 9.075602396640237623680029351479, 9.700766675820996941323991569886