L(s) = 1 | + (1.36 + 1.36i)5-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)13-s + (−0.866 − 0.5i)17-s + 2.73i·25-s + (−0.866 − 1.5i)29-s + (0.5 + 0.133i)37-s + (−0.133 + 0.5i)41-s + (1.86 − 0.499i)45-s + (0.866 − 0.5i)49-s − 53-s + (0.5 − 0.866i)61-s + (−1.86 − 0.499i)65-s + (0.366 − 0.366i)73-s + (−0.499 − 0.866i)81-s + ⋯ |
L(s) = 1 | + (1.36 + 1.36i)5-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)13-s + (−0.866 − 0.5i)17-s + 2.73i·25-s + (−0.866 − 1.5i)29-s + (0.5 + 0.133i)37-s + (−0.133 + 0.5i)41-s + (1.86 − 0.499i)45-s + (0.866 − 0.5i)49-s − 53-s + (0.5 − 0.866i)61-s + (−1.86 − 0.499i)65-s + (0.366 − 0.366i)73-s + (−0.499 − 0.866i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.188263981\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.188263981\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (-0.5 - 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (0.133 - 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37382200025768666036247918630, −9.466907280217285571772487614463, −9.406868570456088469415445568881, −7.71737650154475897965482258027, −6.76184675791351524618622552817, −6.42936583727978270483653683299, −5.35879540791534021062627480148, −4.06990739768071370138353787532, −2.81201065437481343476282945082, −1.96304313090749609697792757956,
1.52583611447171103101202627383, 2.44459611662714200620811490083, 4.30285106476210617640516640235, 5.11340395392256713975733595580, 5.69332215507483514729803568191, 6.86632471771616723842744582839, 7.927356117549501727336875750533, 8.812284877693319782250465107802, 9.459958437149121086492526454523, 10.24368090345367036235719720955