L(s) = 1 | + (1.36 + 1.36i)5-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)13-s + (−0.866 − 0.5i)17-s + 2.73i·25-s + (−0.866 − 1.5i)29-s + (0.5 + 0.133i)37-s + (−0.133 + 0.5i)41-s + (1.86 − 0.499i)45-s + (0.866 − 0.5i)49-s − 53-s + (0.5 − 0.866i)61-s + (−1.86 − 0.499i)65-s + (0.366 − 0.366i)73-s + (−0.499 − 0.866i)81-s + ⋯ |
L(s) = 1 | + (1.36 + 1.36i)5-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)13-s + (−0.866 − 0.5i)17-s + 2.73i·25-s + (−0.866 − 1.5i)29-s + (0.5 + 0.133i)37-s + (−0.133 + 0.5i)41-s + (1.86 − 0.499i)45-s + (0.866 − 0.5i)49-s − 53-s + (0.5 − 0.866i)61-s + (−1.86 − 0.499i)65-s + (0.366 − 0.366i)73-s + (−0.499 − 0.866i)81-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.846−0.533i)Λ(1−s)
Λ(s)=(=(832s/2ΓC(s)L(s)(0.846−0.533i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.846−0.533i
|
Analytic conductor: |
0.415222 |
Root analytic conductor: |
0.644377 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :0), 0.846−0.533i)
|
Particular Values
L(21) |
≈ |
1.188263981 |
L(21) |
≈ |
1.188263981 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(0.866−0.5i)T |
good | 3 | 1+(−0.5+0.866i)T2 |
| 5 | 1+(−1.36−1.36i)T+iT2 |
| 7 | 1+(−0.866+0.5i)T2 |
| 11 | 1+(0.866+0.5i)T2 |
| 17 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 19 | 1+(0.866−0.5i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 31 | 1+iT2 |
| 37 | 1+(−0.5−0.133i)T+(0.866+0.5i)T2 |
| 41 | 1+(0.133−0.5i)T+(−0.866−0.5i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1−iT2 |
| 53 | 1+T+T2 |
| 59 | 1+(−0.866+0.5i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.866−0.5i)T2 |
| 71 | 1+(0.866−0.5i)T2 |
| 73 | 1+(−0.366+0.366i)T−iT2 |
| 79 | 1+T2 |
| 83 | 1+iT2 |
| 89 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 97 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37382200025768666036247918630, −9.466907280217285571772487614463, −9.406868570456088469415445568881, −7.71737650154475897965482258027, −6.76184675791351524618622552817, −6.42936583727978270483653683299, −5.35879540791534021062627480148, −4.06990739768071370138353787532, −2.81201065437481343476282945082, −1.96304313090749609697792757956,
1.52583611447171103101202627383, 2.44459611662714200620811490083, 4.30285106476210617640516640235, 5.11340395392256713975733595580, 5.69332215507483514729803568191, 6.86632471771616723842744582839, 7.927356117549501727336875750533, 8.812284877693319782250465107802, 9.459958437149121086492526454523, 10.24368090345367036235719720955