Properties

Label 2-8325-1.1-c1-0-134
Degree $2$
Conductor $8325$
Sign $-1$
Analytic cond. $66.4754$
Root an. cond. $8.15324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 3·7-s − 4·11-s + 13-s + 4·16-s + 4·17-s − 5·19-s − 4·23-s + 6·28-s + 8·29-s + 5·31-s + 37-s + 8·41-s + 9·43-s + 8·44-s − 12·47-s + 2·49-s − 2·52-s − 4·59-s − 61-s − 8·64-s + 5·67-s − 8·68-s + 4·71-s + 6·73-s + 10·76-s + 12·77-s + ⋯
L(s)  = 1  − 4-s − 1.13·7-s − 1.20·11-s + 0.277·13-s + 16-s + 0.970·17-s − 1.14·19-s − 0.834·23-s + 1.13·28-s + 1.48·29-s + 0.898·31-s + 0.164·37-s + 1.24·41-s + 1.37·43-s + 1.20·44-s − 1.75·47-s + 2/7·49-s − 0.277·52-s − 0.520·59-s − 0.128·61-s − 64-s + 0.610·67-s − 0.970·68-s + 0.474·71-s + 0.702·73-s + 1.14·76-s + 1.36·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8325\)    =    \(3^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(66.4754\)
Root analytic conductor: \(8.15324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good2 \( 1 + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82739137911933209347770335441, −6.52975259644028179159347428552, −6.14489688041184178763690113382, −5.34307551255757580880859691045, −4.62611324182328316046259443344, −3.90780258682550720461373833891, −3.12930490596597876042466594411, −2.42840439950484648016631405052, −0.945396842443061788002559149516, 0, 0.945396842443061788002559149516, 2.42840439950484648016631405052, 3.12930490596597876042466594411, 3.90780258682550720461373833891, 4.62611324182328316046259443344, 5.34307551255757580880859691045, 6.14489688041184178763690113382, 6.52975259644028179159347428552, 7.82739137911933209347770335441

Graph of the $Z$-function along the critical line