Properties

Label 2-8325-1.1-c1-0-237
Degree $2$
Conductor $8325$
Sign $-1$
Analytic cond. $66.4754$
Root an. cond. $8.15324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·7-s + 4·11-s − 13-s + 4·16-s + 4·17-s − 5·19-s − 4·23-s − 6·28-s − 8·29-s + 5·31-s − 37-s − 8·41-s − 9·43-s − 8·44-s − 12·47-s + 2·49-s + 2·52-s + 4·59-s − 61-s − 8·64-s − 5·67-s − 8·68-s − 4·71-s − 6·73-s + 10·76-s + 12·77-s + ⋯
L(s)  = 1  − 4-s + 1.13·7-s + 1.20·11-s − 0.277·13-s + 16-s + 0.970·17-s − 1.14·19-s − 0.834·23-s − 1.13·28-s − 1.48·29-s + 0.898·31-s − 0.164·37-s − 1.24·41-s − 1.37·43-s − 1.20·44-s − 1.75·47-s + 2/7·49-s + 0.277·52-s + 0.520·59-s − 0.128·61-s − 64-s − 0.610·67-s − 0.970·68-s − 0.474·71-s − 0.702·73-s + 1.14·76-s + 1.36·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8325\)    =    \(3^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(66.4754\)
Root analytic conductor: \(8.15324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 5 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 16 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73399753957985416155007133298, −6.70846979961600727854791898641, −6.04428051711941524391541531809, −5.15757924620524458245492034731, −4.71285875378596168196506835357, −3.92778574723351530218672285521, −3.38077332567254002616127775485, −1.93349418455518354421482928110, −1.33130240711472725214006926940, 0, 1.33130240711472725214006926940, 1.93349418455518354421482928110, 3.38077332567254002616127775485, 3.92778574723351530218672285521, 4.71285875378596168196506835357, 5.15757924620524458245492034731, 6.04428051711941524391541531809, 6.70846979961600727854791898641, 7.73399753957985416155007133298

Graph of the $Z$-function along the critical line