L(s) = 1 | − 9·3-s + 6·5-s + 49·7-s + 81·9-s − 108·11-s − 346·13-s − 54·15-s − 1.39e3·17-s − 1.01e3·19-s − 441·21-s − 1.53e3·23-s − 3.08e3·25-s − 729·27-s − 3.76e3·29-s − 736·31-s + 972·33-s + 294·35-s + 2.05e3·37-s + 3.11e3·39-s − 1.55e4·41-s + 1.10e4·43-s + 486·45-s + 4.56e3·47-s + 2.40e3·49-s + 1.25e4·51-s − 7.96e3·53-s − 648·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.107·5-s + 0.377·7-s + 1/3·9-s − 0.269·11-s − 0.567·13-s − 0.0619·15-s − 1.17·17-s − 0.643·19-s − 0.218·21-s − 0.605·23-s − 0.988·25-s − 0.192·27-s − 0.830·29-s − 0.137·31-s + 0.155·33-s + 0.0405·35-s + 0.246·37-s + 0.327·39-s − 1.44·41-s + 0.910·43-s + 0.0357·45-s + 0.301·47-s + 1/7·49-s + 0.677·51-s − 0.389·53-s − 0.0288·55-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 7 | 1−p2T |
good | 5 | 1−6T+p5T2 |
| 11 | 1+108T+p5T2 |
| 13 | 1+346T+p5T2 |
| 17 | 1+1398T+p5T2 |
| 19 | 1+1012T+p5T2 |
| 23 | 1+1536T+p5T2 |
| 29 | 1+3762T+p5T2 |
| 31 | 1+736T+p5T2 |
| 37 | 1−2054T+p5T2 |
| 41 | 1+15534T+p5T2 |
| 43 | 1−11036T+p5T2 |
| 47 | 1−4560T+p5T2 |
| 53 | 1+7962T+p5T2 |
| 59 | 1+7020T+p5T2 |
| 61 | 1−26870T+p5T2 |
| 67 | 1−52148T+p5T2 |
| 71 | 1+2544T+p5T2 |
| 73 | 1+9766T+p5T2 |
| 79 | 1−68672T+p5T2 |
| 83 | 1+61668T+p5T2 |
| 89 | 1+41454T+p5T2 |
| 97 | 1+111262T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70987724973401599935095432225, −11.61040791791882310951281541863, −10.69033219718494232263830482518, −9.521831963978602286033636957168, −8.124799006866335743308090813313, −6.82080511089064574446156943468, −5.51957437080052593999409368883, −4.22206514312905283403621173119, −2.07201297117303168597525594645, 0,
2.07201297117303168597525594645, 4.22206514312905283403621173119, 5.51957437080052593999409368883, 6.82080511089064574446156943468, 8.124799006866335743308090813313, 9.521831963978602286033636957168, 10.69033219718494232263830482518, 11.61040791791882310951281541863, 12.70987724973401599935095432225