Properties

Label 2-84-1.1-c5-0-4
Degree $2$
Conductor $84$
Sign $-1$
Analytic cond. $13.4722$
Root an. cond. $3.67045$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 6·5-s + 49·7-s + 81·9-s − 108·11-s − 346·13-s − 54·15-s − 1.39e3·17-s − 1.01e3·19-s − 441·21-s − 1.53e3·23-s − 3.08e3·25-s − 729·27-s − 3.76e3·29-s − 736·31-s + 972·33-s + 294·35-s + 2.05e3·37-s + 3.11e3·39-s − 1.55e4·41-s + 1.10e4·43-s + 486·45-s + 4.56e3·47-s + 2.40e3·49-s + 1.25e4·51-s − 7.96e3·53-s − 648·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.107·5-s + 0.377·7-s + 1/3·9-s − 0.269·11-s − 0.567·13-s − 0.0619·15-s − 1.17·17-s − 0.643·19-s − 0.218·21-s − 0.605·23-s − 0.988·25-s − 0.192·27-s − 0.830·29-s − 0.137·31-s + 0.155·33-s + 0.0405·35-s + 0.246·37-s + 0.327·39-s − 1.44·41-s + 0.910·43-s + 0.0357·45-s + 0.301·47-s + 1/7·49-s + 0.677·51-s − 0.389·53-s − 0.0288·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(84\)    =    \(2^{2} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(13.4722\)
Root analytic conductor: \(3.67045\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 84,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
7 \( 1 - p^{2} T \)
good5 \( 1 - 6 T + p^{5} T^{2} \)
11 \( 1 + 108 T + p^{5} T^{2} \)
13 \( 1 + 346 T + p^{5} T^{2} \)
17 \( 1 + 1398 T + p^{5} T^{2} \)
19 \( 1 + 1012 T + p^{5} T^{2} \)
23 \( 1 + 1536 T + p^{5} T^{2} \)
29 \( 1 + 3762 T + p^{5} T^{2} \)
31 \( 1 + 736 T + p^{5} T^{2} \)
37 \( 1 - 2054 T + p^{5} T^{2} \)
41 \( 1 + 15534 T + p^{5} T^{2} \)
43 \( 1 - 11036 T + p^{5} T^{2} \)
47 \( 1 - 4560 T + p^{5} T^{2} \)
53 \( 1 + 7962 T + p^{5} T^{2} \)
59 \( 1 + 7020 T + p^{5} T^{2} \)
61 \( 1 - 26870 T + p^{5} T^{2} \)
67 \( 1 - 52148 T + p^{5} T^{2} \)
71 \( 1 + 2544 T + p^{5} T^{2} \)
73 \( 1 + 9766 T + p^{5} T^{2} \)
79 \( 1 - 68672 T + p^{5} T^{2} \)
83 \( 1 + 61668 T + p^{5} T^{2} \)
89 \( 1 + 41454 T + p^{5} T^{2} \)
97 \( 1 + 111262 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.70987724973401599935095432225, −11.61040791791882310951281541863, −10.69033219718494232263830482518, −9.521831963978602286033636957168, −8.124799006866335743308090813313, −6.82080511089064574446156943468, −5.51957437080052593999409368883, −4.22206514312905283403621173119, −2.07201297117303168597525594645, 0, 2.07201297117303168597525594645, 4.22206514312905283403621173119, 5.51957437080052593999409368883, 6.82080511089064574446156943468, 8.124799006866335743308090813313, 9.521831963978602286033636957168, 10.69033219718494232263830482518, 11.61040791791882310951281541863, 12.70987724973401599935095432225

Graph of the $Z$-function along the critical line