L(s) = 1 | + (1.34 + 0.430i)2-s + (−0.916 − 1.46i)3-s + (1.62 + 1.15i)4-s + 0.348i·5-s + (−0.602 − 2.37i)6-s − i·7-s + (1.69 + 2.26i)8-s + (−1.31 + 2.69i)9-s + (−0.150 + 0.469i)10-s − 3.90·11-s + (0.210 − 3.45i)12-s − 2.93·13-s + (0.430 − 1.34i)14-s + (0.512 − 0.319i)15-s + (1.30 + 3.77i)16-s − 3.90i·17-s + ⋯ |
L(s) = 1 | + (0.952 + 0.304i)2-s + (−0.529 − 0.848i)3-s + (0.814 + 0.579i)4-s + 0.155i·5-s + (−0.245 − 0.969i)6-s − 0.377i·7-s + (0.599 + 0.800i)8-s + (−0.439 + 0.898i)9-s + (−0.0474 + 0.148i)10-s − 1.17·11-s + (0.0608 − 0.998i)12-s − 0.815·13-s + (0.115 − 0.360i)14-s + (0.132 − 0.0825i)15-s + (0.327 + 0.944i)16-s − 0.946i·17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.998+0.0608i)Λ(2−s)
Λ(s)=(=(84s/2ΓC(s+1/2)L(s)(0.998+0.0608i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.998+0.0608i
|
Analytic conductor: |
0.670743 |
Root analytic conductor: |
0.818989 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :1/2), 0.998+0.0608i)
|
Particular Values
L(1) |
≈ |
1.31965−0.0402016i |
L(21) |
≈ |
1.31965−0.0402016i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.34−0.430i)T |
| 3 | 1+(0.916+1.46i)T |
| 7 | 1+iT |
good | 5 | 1−0.348iT−5T2 |
| 11 | 1+3.90T+11T2 |
| 13 | 1+2.93T+13T2 |
| 17 | 1+3.90iT−17T2 |
| 19 | 1−5.57iT−19T2 |
| 23 | 1−2.18T+23T2 |
| 29 | 1+9.75iT−29T2 |
| 31 | 1+2.63iT−31T2 |
| 37 | 1−0.639T+37T2 |
| 41 | 1−7.57iT−41T2 |
| 43 | 1+2.51iT−43T2 |
| 47 | 1−4.36T+47T2 |
| 53 | 1−1.72iT−53T2 |
| 59 | 1−8.24T+59T2 |
| 61 | 1+14.0T+61T2 |
| 67 | 1+0.639iT−67T2 |
| 71 | 1+11.9T+71T2 |
| 73 | 1−7.87T+73T2 |
| 79 | 1+4iT−79T2 |
| 83 | 1+8.94T+83T2 |
| 89 | 1−10.5iT−89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.02981973548596367676632714643, −13.22235648863063013993121403244, −12.33942199242103248595506112614, −11.38457465708374488297603935742, −10.25994119439235670400913770433, −7.956038828687021013273706169893, −7.24717638784428222116721073743, −5.94396641703700883856860150464, −4.78771429570704647593834017756, −2.62369144497836808755406868877,
2.96303196562227100648239238537, 4.71684099634878143413359447914, 5.47885126754850771673006861106, 6.98465057703508213337928389440, 8.955071294499425078885367380622, 10.36700447579834258745451868445, 10.98410854322699648999967949636, 12.27672108807410175720734681211, 12.98037529658177347876485456420, 14.47228109343457678568331218541