L(s) = 1 | + (1.34 + 0.430i)2-s + (−0.916 − 1.46i)3-s + (1.62 + 1.15i)4-s + 0.348i·5-s + (−0.602 − 2.37i)6-s − i·7-s + (1.69 + 2.26i)8-s + (−1.31 + 2.69i)9-s + (−0.150 + 0.469i)10-s − 3.90·11-s + (0.210 − 3.45i)12-s − 2.93·13-s + (0.430 − 1.34i)14-s + (0.512 − 0.319i)15-s + (1.30 + 3.77i)16-s − 3.90i·17-s + ⋯ |
L(s) = 1 | + (0.952 + 0.304i)2-s + (−0.529 − 0.848i)3-s + (0.814 + 0.579i)4-s + 0.155i·5-s + (−0.245 − 0.969i)6-s − 0.377i·7-s + (0.599 + 0.800i)8-s + (−0.439 + 0.898i)9-s + (−0.0474 + 0.148i)10-s − 1.17·11-s + (0.0608 − 0.998i)12-s − 0.815·13-s + (0.115 − 0.360i)14-s + (0.132 − 0.0825i)15-s + (0.327 + 0.944i)16-s − 0.946i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0608i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31965 - 0.0402016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31965 - 0.0402016i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 - 0.430i)T \) |
| 3 | \( 1 + (0.916 + 1.46i)T \) |
| 7 | \( 1 + iT \) |
good | 5 | \( 1 - 0.348iT - 5T^{2} \) |
| 11 | \( 1 + 3.90T + 11T^{2} \) |
| 13 | \( 1 + 2.93T + 13T^{2} \) |
| 17 | \( 1 + 3.90iT - 17T^{2} \) |
| 19 | \( 1 - 5.57iT - 19T^{2} \) |
| 23 | \( 1 - 2.18T + 23T^{2} \) |
| 29 | \( 1 + 9.75iT - 29T^{2} \) |
| 31 | \( 1 + 2.63iT - 31T^{2} \) |
| 37 | \( 1 - 0.639T + 37T^{2} \) |
| 41 | \( 1 - 7.57iT - 41T^{2} \) |
| 43 | \( 1 + 2.51iT - 43T^{2} \) |
| 47 | \( 1 - 4.36T + 47T^{2} \) |
| 53 | \( 1 - 1.72iT - 53T^{2} \) |
| 59 | \( 1 - 8.24T + 59T^{2} \) |
| 61 | \( 1 + 14.0T + 61T^{2} \) |
| 67 | \( 1 + 0.639iT - 67T^{2} \) |
| 71 | \( 1 + 11.9T + 71T^{2} \) |
| 73 | \( 1 - 7.87T + 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 + 8.94T + 83T^{2} \) |
| 89 | \( 1 - 10.5iT - 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.02981973548596367676632714643, −13.22235648863063013993121403244, −12.33942199242103248595506112614, −11.38457465708374488297603935742, −10.25994119439235670400913770433, −7.956038828687021013273706169893, −7.24717638784428222116721073743, −5.94396641703700883856860150464, −4.78771429570704647593834017756, −2.62369144497836808755406868877,
2.96303196562227100648239238537, 4.71684099634878143413359447914, 5.47885126754850771673006861106, 6.98465057703508213337928389440, 8.955071294499425078885367380622, 10.36700447579834258745451868445, 10.98410854322699648999967949636, 12.27672108807410175720734681211, 12.98037529658177347876485456420, 14.47228109343457678568331218541