L(s) = 1 | + (2.16 − 1.81i)2-s + (3.06 + 4.19i)3-s + (1.40 − 7.87i)4-s − 20.4i·5-s + (14.2 + 3.52i)6-s + 7i·7-s + (−11.2 − 19.6i)8-s + (−8.20 + 25.7i)9-s + (−37.1 − 44.3i)10-s + 32.3·11-s + (37.3 − 18.2i)12-s + 24.7·13-s + (12.7 + 15.1i)14-s + (85.8 − 62.7i)15-s + (−60.0 − 22.0i)16-s + 103. i·17-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.590 + 0.807i)3-s + (0.175 − 0.984i)4-s − 1.83i·5-s + (0.970 + 0.240i)6-s + 0.377i·7-s + (−0.497 − 0.867i)8-s + (−0.303 + 0.952i)9-s + (−1.17 − 1.40i)10-s + 0.887·11-s + (0.898 − 0.439i)12-s + 0.527·13-s + (0.242 + 0.289i)14-s + (1.47 − 1.08i)15-s + (−0.938 − 0.344i)16-s + 1.48i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.439 + 0.898i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.23883 - 1.39713i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.23883 - 1.39713i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.16 + 1.81i)T \) |
| 3 | \( 1 + (-3.06 - 4.19i)T \) |
| 7 | \( 1 - 7iT \) |
good | 5 | \( 1 + 20.4iT - 125T^{2} \) |
| 11 | \( 1 - 32.3T + 1.33e3T^{2} \) |
| 13 | \( 1 - 24.7T + 2.19e3T^{2} \) |
| 17 | \( 1 - 103. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 3.49iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 18.3T + 1.21e4T^{2} \) |
| 29 | \( 1 + 146. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 326. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 37.6T + 5.06e4T^{2} \) |
| 41 | \( 1 - 111. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 119. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 145.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 386. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 108.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 305.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 508. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 99.6T + 3.57e5T^{2} \) |
| 73 | \( 1 + 478.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 887. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 26.5T + 5.71e5T^{2} \) |
| 89 | \( 1 + 807. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.29e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.44480887679980154193289979563, −12.61920265279812531379522530719, −11.64108456147785031488594031772, −10.25630120297532286640451612346, −9.115899314668314946511547250674, −8.474346461177702836747746398756, −5.88476341596555632707010313845, −4.72026862935323924448425834079, −3.75717471232301240538865223635, −1.57716272302113645878034162113,
2.65553245235578808629773357056, 3.75635938897920182613074682828, 6.15326008540191995180315581846, 6.97580189231654458153925882662, 7.67615938197768359822455421518, 9.301540638230577911005136297101, 11.09021022851261240745937372107, 11.90174347636782443341628088639, 13.39452366176522346680257983742, 14.07524958977226603991603562014