L(s) = 1 | + (−5.35 + 1.82i)2-s + (−15.1 + 3.68i)3-s + (25.3 − 19.5i)4-s + 66.1i·5-s + (74.3 − 47.4i)6-s − 49i·7-s + (−99.7 + 151. i)8-s + (215. − 111. i)9-s + (−120. − 354. i)10-s + 653.·11-s + (−311. + 389. i)12-s + 260.·13-s + (89.5 + 262. i)14-s + (−243. − 1.00e3i)15-s + (257. − 991. i)16-s − 5.25i·17-s + ⋯ |
L(s) = 1 | + (−0.946 + 0.323i)2-s + (−0.971 + 0.236i)3-s + (0.791 − 0.611i)4-s + 1.18i·5-s + (0.843 − 0.537i)6-s − 0.377i·7-s + (−0.551 + 0.834i)8-s + (0.888 − 0.459i)9-s + (−0.382 − 1.11i)10-s + 1.62·11-s + (−0.624 + 0.781i)12-s + 0.427·13-s + (0.122 + 0.357i)14-s + (−0.279 − 1.14i)15-s + (0.251 − 0.967i)16-s − 0.00441i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.781 - 0.624i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.781 - 0.624i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.223199 + 0.637079i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.223199 + 0.637079i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (5.35 - 1.82i)T \) |
| 3 | \( 1 + (15.1 - 3.68i)T \) |
| 7 | \( 1 + 49iT \) |
good | 5 | \( 1 - 66.1iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 653.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 260.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 5.25iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.67e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 4.64e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 1.16e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 281. iT - 2.86e7T^{2} \) |
| 37 | \( 1 + 1.87e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.25e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.81e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 9.83e3T + 2.29e8T^{2} \) |
| 53 | \( 1 + 2.71e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 2.03e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 8.68e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 6.10e3iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 1.74e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 6.84e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 7.56e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 5.85e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 3.02e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 7.48e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.18170156957362024384319735577, −12.07696275826593872474542407312, −11.32539046700915773402133183482, −10.34692321339590409430170336364, −9.621783976373133757667499667566, −7.88735840792377773766398475859, −6.58117344759527883063769874338, −6.08274393259955855526905428455, −3.83529925293942552130139127711, −1.43631814534852605663930157851,
0.47922271355392630691099685477, 1.66483469869168392189802234248, 4.23568271351250942067964139512, 5.91157050429856217844286070332, 7.08850811491920105262065544511, 8.648285314143350976447873288491, 9.367101803730957443362329687043, 10.76955176011419992309372930082, 11.94626072260756352508103150891, 12.25182473042320115552260739797