L(s) = 1 | + (−5.35 + 1.82i)2-s + (−15.1 + 3.68i)3-s + (25.3 − 19.5i)4-s + 66.1i·5-s + (74.3 − 47.4i)6-s − 49i·7-s + (−99.7 + 151. i)8-s + (215. − 111. i)9-s + (−120. − 354. i)10-s + 653.·11-s + (−311. + 389. i)12-s + 260.·13-s + (89.5 + 262. i)14-s + (−243. − 1.00e3i)15-s + (257. − 991. i)16-s − 5.25i·17-s + ⋯ |
L(s) = 1 | + (−0.946 + 0.323i)2-s + (−0.971 + 0.236i)3-s + (0.791 − 0.611i)4-s + 1.18i·5-s + (0.843 − 0.537i)6-s − 0.377i·7-s + (−0.551 + 0.834i)8-s + (0.888 − 0.459i)9-s + (−0.382 − 1.11i)10-s + 1.62·11-s + (−0.624 + 0.781i)12-s + 0.427·13-s + (0.122 + 0.357i)14-s + (−0.279 − 1.14i)15-s + (0.251 − 0.967i)16-s − 0.00441i·17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(−0.781−0.624i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(−0.781−0.624i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
−0.781−0.624i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), −0.781−0.624i)
|
Particular Values
L(3) |
≈ |
0.223199+0.637079i |
L(21) |
≈ |
0.223199+0.637079i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(5.35−1.82i)T |
| 3 | 1+(15.1−3.68i)T |
| 7 | 1+49iT |
good | 5 | 1−66.1iT−3.12e3T2 |
| 11 | 1−653.T+1.61e5T2 |
| 13 | 1−260.T+3.71e5T2 |
| 17 | 1+5.25iT−1.41e6T2 |
| 19 | 1−2.67e3iT−2.47e6T2 |
| 23 | 1+4.64e3T+6.43e6T2 |
| 29 | 1+1.16e3iT−2.05e7T2 |
| 31 | 1+281.iT−2.86e7T2 |
| 37 | 1+1.87e3T+6.93e7T2 |
| 41 | 1−1.25e4iT−1.15e8T2 |
| 43 | 1−1.81e4iT−1.47e8T2 |
| 47 | 1−9.83e3T+2.29e8T2 |
| 53 | 1+2.71e4iT−4.18e8T2 |
| 59 | 1+2.03e4T+7.14e8T2 |
| 61 | 1+8.68e3T+8.44e8T2 |
| 67 | 1+6.10e3iT−1.35e9T2 |
| 71 | 1−1.74e4T+1.80e9T2 |
| 73 | 1+6.84e4T+2.07e9T2 |
| 79 | 1−7.56e4iT−3.07e9T2 |
| 83 | 1−5.85e4T+3.93e9T2 |
| 89 | 1−3.02e4iT−5.58e9T2 |
| 97 | 1+7.48e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.18170156957362024384319735577, −12.07696275826593872474542407312, −11.32539046700915773402133183482, −10.34692321339590409430170336364, −9.621783976373133757667499667566, −7.88735840792377773766398475859, −6.58117344759527883063769874338, −6.08274393259955855526905428455, −3.83529925293942552130139127711, −1.43631814534852605663930157851,
0.47922271355392630691099685477, 1.66483469869168392189802234248, 4.23568271351250942067964139512, 5.91157050429856217844286070332, 7.08850811491920105262065544511, 8.648285314143350976447873288491, 9.367101803730957443362329687043, 10.76955176011419992309372930082, 11.94626072260756352508103150891, 12.25182473042320115552260739797