L(s) = 1 | + (5.65 + 0.276i)2-s + (−8.82 + 12.8i)3-s + (31.8 + 3.12i)4-s + 100. i·5-s + (−53.4 + 70.1i)6-s − 49i·7-s + (179. + 26.4i)8-s + (−87.2 − 226. i)9-s + (−27.6 + 565. i)10-s − 5.60·11-s + (−321. + 381. i)12-s − 1.04e3·13-s + (13.5 − 276. i)14-s + (−1.28e3 − 883. i)15-s + (1.00e3 + 198. i)16-s + 333. i·17-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0488i)2-s + (−0.566 + 0.824i)3-s + (0.995 + 0.0975i)4-s + 1.79i·5-s + (−0.605 + 0.795i)6-s − 0.377i·7-s + (0.989 + 0.146i)8-s + (−0.358 − 0.933i)9-s + (−0.0874 + 1.78i)10-s − 0.0139·11-s + (−0.643 + 0.765i)12-s − 1.71·13-s + (0.0184 − 0.377i)14-s + (−1.47 − 1.01i)15-s + (0.980 + 0.194i)16-s + 0.279i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.765 - 0.643i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.765 - 0.643i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.811127 + 2.22348i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.811127 + 2.22348i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-5.65 - 0.276i)T \) |
| 3 | \( 1 + (8.82 - 12.8i)T \) |
| 7 | \( 1 + 49iT \) |
good | 5 | \( 1 - 100. iT - 3.12e3T^{2} \) |
| 11 | \( 1 + 5.60T + 1.61e5T^{2} \) |
| 13 | \( 1 + 1.04e3T + 3.71e5T^{2} \) |
| 17 | \( 1 - 333. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.63e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 3.80e3T + 6.43e6T^{2} \) |
| 29 | \( 1 - 3.37e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 2.26e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 2.88e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 680. iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 1.09e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 3.23e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 3.16e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 2.68e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.47e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 3.14e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 3.66e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 6.91e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 2.56e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 5.31e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 7.83e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 8.62e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.13476023423403372380300171587, −12.51932117857791636037411104588, −11.44460037548220828425813433136, −10.62781214387047819660444326845, −9.917501723248082571595986378083, −7.41346617852586734671390349794, −6.59102999386025911627533183282, −5.29323329409033052942833429554, −3.84493678493584150235908436746, −2.70511662558157729263095340783,
0.74953769158305675442226443545, 2.32050001275252202408379434117, 4.85605152463149893673805974437, 5.22034295946761928450006174397, 6.82561116903121002234755841981, 8.040388689160035710476242156758, 9.516382776297569531509861885921, 11.32360292601377780723470697703, 12.17035102400941542773168846627, 12.80791590068433101417555658404