L(s) = 1 | + (−3.60 + 4.36i)2-s + (−2.15 + 15.4i)3-s + (−6.05 − 31.4i)4-s − 60.5i·5-s + (−59.5 − 65.0i)6-s + 49i·7-s + (158. + 86.7i)8-s + (−233. − 66.5i)9-s + (264. + 218. i)10-s + 697.·11-s + (498. − 25.6i)12-s + 189.·13-s + (−213. − 176. i)14-s + (934. + 130. i)15-s + (−950. + 380. i)16-s − 419. i·17-s + ⋯ |
L(s) = 1 | + (−0.636 + 0.771i)2-s + (−0.138 + 0.990i)3-s + (−0.189 − 0.981i)4-s − 1.08i·5-s + (−0.675 − 0.737i)6-s + 0.377i·7-s + (0.877 + 0.479i)8-s + (−0.961 − 0.274i)9-s + (0.835 + 0.689i)10-s + 1.73·11-s + (0.998 − 0.0514i)12-s + 0.311·13-s + (−0.291 − 0.240i)14-s + (1.07 + 0.149i)15-s + (−0.928 + 0.371i)16-s − 0.351i·17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(−0.0514−0.998i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(−0.0514−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
−0.0514−0.998i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), −0.0514−0.998i)
|
Particular Values
L(3) |
≈ |
0.845969+0.890714i |
L(21) |
≈ |
0.845969+0.890714i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.60−4.36i)T |
| 3 | 1+(2.15−15.4i)T |
| 7 | 1−49iT |
good | 5 | 1+60.5iT−3.12e3T2 |
| 11 | 1−697.T+1.61e5T2 |
| 13 | 1−189.T+3.71e5T2 |
| 17 | 1+419.iT−1.41e6T2 |
| 19 | 1−1.89e3iT−2.47e6T2 |
| 23 | 1+589.T+6.43e6T2 |
| 29 | 1−1.91e3iT−2.05e7T2 |
| 31 | 1−6.67e3iT−2.86e7T2 |
| 37 | 1−1.14e4T+6.93e7T2 |
| 41 | 1+717.iT−1.15e8T2 |
| 43 | 1−7.80e3iT−1.47e8T2 |
| 47 | 1+1.70e3T+2.29e8T2 |
| 53 | 1−2.54e4iT−4.18e8T2 |
| 59 | 1−4.74e4T+7.14e8T2 |
| 61 | 1−2.52e4T+8.44e8T2 |
| 67 | 1+5.30e4iT−1.35e9T2 |
| 71 | 1−3.37e4T+1.80e9T2 |
| 73 | 1−5.88e4T+2.07e9T2 |
| 79 | 1−7.38e4iT−3.07e9T2 |
| 83 | 1+7.27e4T+3.93e9T2 |
| 89 | 1+1.01e5iT−5.58e9T2 |
| 97 | 1+1.46e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.08242395185165387756416883500, −12.33782017716751329390074724336, −11.23181537750882690261248062022, −9.816014030739595642020780582258, −9.077746373430728753138199170384, −8.319886394346975062194456434214, −6.41936903324274852523888893362, −5.30075737068808335343073004753, −4.09546841215764554983837162853, −1.14781117750863802795734198282,
0.835045688503849014219927891417, 2.35484528161638255040368045021, 3.83458813936068047064090385623, 6.45904629044014448308216835371, 7.20449891306249539948402336907, 8.515593300732691106529516100557, 9.772161608698479866559282812590, 11.22717696478656087588575022698, 11.52581820210158371791847854440, 12.89956298219521311708702349084