L(s) = 1 | + (−3.60 + 4.36i)2-s + (−2.15 + 15.4i)3-s + (−6.05 − 31.4i)4-s − 60.5i·5-s + (−59.5 − 65.0i)6-s + 49i·7-s + (158. + 86.7i)8-s + (−233. − 66.5i)9-s + (264. + 218. i)10-s + 697.·11-s + (498. − 25.6i)12-s + 189.·13-s + (−213. − 176. i)14-s + (934. + 130. i)15-s + (−950. + 380. i)16-s − 419. i·17-s + ⋯ |
L(s) = 1 | + (−0.636 + 0.771i)2-s + (−0.138 + 0.990i)3-s + (−0.189 − 0.981i)4-s − 1.08i·5-s + (−0.675 − 0.737i)6-s + 0.377i·7-s + (0.877 + 0.479i)8-s + (−0.961 − 0.274i)9-s + (0.835 + 0.689i)10-s + 1.73·11-s + (0.998 − 0.0514i)12-s + 0.311·13-s + (−0.291 − 0.240i)14-s + (1.07 + 0.149i)15-s + (−0.928 + 0.371i)16-s − 0.351i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0514 - 0.998i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.0514 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.845969 + 0.890714i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.845969 + 0.890714i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (3.60 - 4.36i)T \) |
| 3 | \( 1 + (2.15 - 15.4i)T \) |
| 7 | \( 1 - 49iT \) |
good | 5 | \( 1 + 60.5iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 697.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 189.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 419. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.89e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 589.T + 6.43e6T^{2} \) |
| 29 | \( 1 - 1.91e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 6.67e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 1.14e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + 717. iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 7.80e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.70e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 2.54e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 4.74e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.52e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 5.30e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 3.37e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 5.88e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 7.38e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + 7.27e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.01e5iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 1.46e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.08242395185165387756416883500, −12.33782017716751329390074724336, −11.23181537750882690261248062022, −9.816014030739595642020780582258, −9.077746373430728753138199170384, −8.319886394346975062194456434214, −6.41936903324274852523888893362, −5.30075737068808335343073004753, −4.09546841215764554983837162853, −1.14781117750863802795734198282,
0.835045688503849014219927891417, 2.35484528161638255040368045021, 3.83458813936068047064090385623, 6.45904629044014448308216835371, 7.20449891306249539948402336907, 8.515593300732691106529516100557, 9.772161608698479866559282812590, 11.22717696478656087588575022698, 11.52581820210158371791847854440, 12.89956298219521311708702349084