L(s) = 1 | + (−4.66 − 3.20i)2-s + (15.3 + 2.55i)3-s + (11.4 + 29.8i)4-s − 8.37i·5-s + (−63.5 − 61.1i)6-s + 49i·7-s + (42.0 − 176. i)8-s + (229. + 78.7i)9-s + (−26.8 + 39.0i)10-s + 453.·11-s + (100. + 488. i)12-s − 689.·13-s + (156. − 228. i)14-s + (21.4 − 128. i)15-s + (−759. + 686. i)16-s + 2.11e3i·17-s + ⋯ |
L(s) = 1 | + (−0.824 − 0.566i)2-s + (0.986 + 0.164i)3-s + (0.359 + 0.933i)4-s − 0.149i·5-s + (−0.720 − 0.693i)6-s + 0.377i·7-s + (0.232 − 0.972i)8-s + (0.946 + 0.323i)9-s + (−0.0848 + 0.123i)10-s + 1.12·11-s + (0.200 + 0.979i)12-s − 1.13·13-s + (0.213 − 0.311i)14-s + (0.0245 − 0.147i)15-s + (−0.742 + 0.670i)16-s + 1.77i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.200i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.979 - 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.76437 + 0.179107i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76437 + 0.179107i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (4.66 + 3.20i)T \) |
| 3 | \( 1 + (-15.3 - 2.55i)T \) |
| 7 | \( 1 - 49iT \) |
good | 5 | \( 1 + 8.37iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 453.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 689.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 2.11e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 129. iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 4.27e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 4.93e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 1.62e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 4.59e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 675. iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.83e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.04e4T + 2.29e8T^{2} \) |
| 53 | \( 1 + 2.33e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 2.36e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 2.63e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.64e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.11e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 1.83e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 8.46e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + 4.43e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.17e5iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 1.13e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03572055254735068427078128026, −12.31640178588476648075762148954, −10.95105856910606139309060297950, −9.750022604619014689021021493792, −8.977411401599375123713806211162, −8.029024362215871895070243771087, −6.74519603155264523005466903081, −4.30995640228323175718390032149, −2.89875800665064296402284405232, −1.46491708277735980410321723261,
1.00694290792320026213412330618, 2.77379554800675668262170541420, 4.83035712695565756541298253118, 6.93409937736225467967511657302, 7.34161834299221166708665939713, 8.961065668812671263022791802185, 9.444226465559637482023956185259, 10.76341789306733743254625194084, 12.14796457179370208429386354071, 13.70862067856135357742011737220