L(s) = 1 | + (−1.03 − 5.56i)2-s + (13.7 − 7.34i)3-s + (−29.8 + 11.5i)4-s + 59.1i·5-s + (−55.1 − 68.8i)6-s + 49i·7-s + (95.2 + 153. i)8-s + (135. − 201. i)9-s + (329. − 61.4i)10-s + 242.·11-s + (−325. + 377. i)12-s + 886.·13-s + (272. − 50.9i)14-s + (434. + 813. i)15-s + (757. − 689. i)16-s − 988. i·17-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.982i)2-s + (0.882 − 0.470i)3-s + (−0.932 + 0.361i)4-s + 1.05i·5-s + (−0.624 − 0.780i)6-s + 0.377i·7-s + (0.526 + 0.850i)8-s + (0.556 − 0.830i)9-s + (1.04 − 0.194i)10-s + 0.603·11-s + (−0.652 + 0.757i)12-s + 1.45·13-s + (0.371 − 0.0694i)14-s + (0.498 + 0.933i)15-s + (0.739 − 0.673i)16-s − 0.829i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.757 + 0.652i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.757 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.04326 - 0.758736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.04326 - 0.758736i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.03 + 5.56i)T \) |
| 3 | \( 1 + (-13.7 + 7.34i)T \) |
| 7 | \( 1 - 49iT \) |
good | 5 | \( 1 - 59.1iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 242.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 886.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 988. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.55e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 27.1T + 6.43e6T^{2} \) |
| 29 | \( 1 - 924. iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 30.5iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 1.32e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + 9.49e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 9.13e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.72e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.78e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 3.89e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 3.28e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 3.60e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 5.83e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 7.38e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 6.55e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 6.12e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 4.18e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 3.85e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.17717835805156145834132865113, −12.03937462073189799421523727935, −11.04608776152374624747532746809, −9.852775071929327037449034427960, −8.812691115393577047831962082557, −7.73322744416188930813446350074, −6.24179554323922921464737066071, −3.85397254147007287610688290261, −2.86296070811001385093946477186, −1.41064011626807765453477615904,
1.12379708109284480632934083649, 3.85563289441203898092407224313, 4.86806188023119784974727384152, 6.49041211748792226065644712391, 8.029765170527643402940988055429, 8.784268576746373102201662034261, 9.556877196476095240609404198066, 10.97375251117188018605576354232, 13.02259210184747444295499582885, 13.46355663816515382533884745715