L(s) = 1 | + (−1.03 − 5.56i)2-s + (13.7 − 7.34i)3-s + (−29.8 + 11.5i)4-s + 59.1i·5-s + (−55.1 − 68.8i)6-s + 49i·7-s + (95.2 + 153. i)8-s + (135. − 201. i)9-s + (329. − 61.4i)10-s + 242.·11-s + (−325. + 377. i)12-s + 886.·13-s + (272. − 50.9i)14-s + (434. + 813. i)15-s + (757. − 689. i)16-s − 988. i·17-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.982i)2-s + (0.882 − 0.470i)3-s + (−0.932 + 0.361i)4-s + 1.05i·5-s + (−0.624 − 0.780i)6-s + 0.377i·7-s + (0.526 + 0.850i)8-s + (0.556 − 0.830i)9-s + (1.04 − 0.194i)10-s + 0.603·11-s + (−0.652 + 0.757i)12-s + 1.45·13-s + (0.371 − 0.0694i)14-s + (0.498 + 0.933i)15-s + (0.739 − 0.673i)16-s − 0.829i·17-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.757+0.652i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(0.757+0.652i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.757+0.652i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), 0.757+0.652i)
|
Particular Values
L(3) |
≈ |
2.04326−0.758736i |
L(21) |
≈ |
2.04326−0.758736i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.03+5.56i)T |
| 3 | 1+(−13.7+7.34i)T |
| 7 | 1−49iT |
good | 5 | 1−59.1iT−3.12e3T2 |
| 11 | 1−242.T+1.61e5T2 |
| 13 | 1−886.T+3.71e5T2 |
| 17 | 1+988.iT−1.41e6T2 |
| 19 | 1−2.55e3iT−2.47e6T2 |
| 23 | 1−27.1T+6.43e6T2 |
| 29 | 1−924.iT−2.05e7T2 |
| 31 | 1+30.5iT−2.86e7T2 |
| 37 | 1−1.32e4T+6.93e7T2 |
| 41 | 1+9.49e3iT−1.15e8T2 |
| 43 | 1−9.13e3iT−1.47e8T2 |
| 47 | 1+1.72e4T+2.29e8T2 |
| 53 | 1−1.78e4iT−4.18e8T2 |
| 59 | 1+3.89e4T+7.14e8T2 |
| 61 | 1−3.28e4T+8.44e8T2 |
| 67 | 1−3.60e4iT−1.35e9T2 |
| 71 | 1−5.83e4T+1.80e9T2 |
| 73 | 1+7.38e4T+2.07e9T2 |
| 79 | 1+6.55e4iT−3.07e9T2 |
| 83 | 1−6.12e4T+3.93e9T2 |
| 89 | 1+4.18e4iT−5.58e9T2 |
| 97 | 1−3.85e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.17717835805156145834132865113, −12.03937462073189799421523727935, −11.04608776152374624747532746809, −9.852775071929327037449034427960, −8.812691115393577047831962082557, −7.73322744416188930813446350074, −6.24179554323922921464737066071, −3.85397254147007287610688290261, −2.86296070811001385093946477186, −1.41064011626807765453477615904,
1.12379708109284480632934083649, 3.85563289441203898092407224313, 4.86806188023119784974727384152, 6.49041211748792226065644712391, 8.029765170527643402940988055429, 8.784268576746373102201662034261, 9.556877196476095240609404198066, 10.97375251117188018605576354232, 13.02259210184747444295499582885, 13.46355663816515382533884745715