L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s − 13-s + (0.5 + 0.866i)19-s + 0.999·21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (0.5 − 0.866i)31-s + (0.5 + 0.866i)37-s + (0.5 − 0.866i)39-s − 43-s + (−0.499 + 0.866i)49-s − 0.999·57-s + (−1 − 1.73i)61-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s − 13-s + (0.5 + 0.866i)19-s + 0.999·21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (0.5 − 0.866i)31-s + (0.5 + 0.866i)37-s + (0.5 − 0.866i)39-s − 43-s + (−0.499 + 0.866i)49-s − 0.999·57-s + (−1 − 1.73i)61-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.895−0.444i)Λ(1−s)
Λ(s)=(=(84s/2ΓC(s)L(s)(0.895−0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.895−0.444i
|
Analytic conductor: |
0.0419214 |
Root analytic conductor: |
0.204747 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :0), 0.895−0.444i)
|
Particular Values
L(21) |
≈ |
0.4550711842 |
L(21) |
≈ |
0.4550711842 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5−0.866i)T |
| 7 | 1+(0.5+0.866i)T |
good | 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+T+T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−2T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.74600246740631530719188745074, −13.63570593099300485737171669080, −12.33651690769049716182029767608, −11.28616606617349332842095808165, −10.10977840826758241325303230439, −9.514310179830675798001626081592, −7.74268924650426005669373898019, −6.33268371238830377081639818438, −4.89098280278214127535463544377, −3.52084052442906496218604031148,
2.56497434085969418732679777437, 5.07920460323713432335456360487, 6.30895696473354994681334896900, 7.44725460239841168931737259170, 8.796010299104171695587299127572, 10.11348932277312344731628512468, 11.57081641310592920438165715557, 12.27926998190461195602564601842, 13.20498120399190008275121892141, 14.33197631703146060715751911730