L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s − 13-s + (0.5 + 0.866i)19-s + 0.999·21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (0.5 − 0.866i)31-s + (0.5 + 0.866i)37-s + (0.5 − 0.866i)39-s − 43-s + (−0.499 + 0.866i)49-s − 0.999·57-s + (−1 − 1.73i)61-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s − 13-s + (0.5 + 0.866i)19-s + 0.999·21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (0.5 − 0.866i)31-s + (0.5 + 0.866i)37-s + (0.5 − 0.866i)39-s − 43-s + (−0.499 + 0.866i)49-s − 0.999·57-s + (−1 − 1.73i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 - 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 - 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4550711842\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4550711842\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.74600246740631530719188745074, −13.63570593099300485737171669080, −12.33651690769049716182029767608, −11.28616606617349332842095808165, −10.10977840826758241325303230439, −9.514310179830675798001626081592, −7.74268924650426005669373898019, −6.33268371238830377081639818438, −4.89098280278214127535463544377, −3.52084052442906496218604031148,
2.56497434085969418732679777437, 5.07920460323713432335456360487, 6.30895696473354994681334896900, 7.44725460239841168931737259170, 8.796010299104171695587299127572, 10.11348932277312344731628512468, 11.57081641310592920438165715557, 12.27926998190461195602564601842, 13.20498120399190008275121892141, 14.33197631703146060715751911730